1,588 research outputs found

    A Highly Pathogenic Strain of Staphylococcus sciuri Caused Fatal Exudative Epidermitis in Piglets

    Get PDF
    Staphylococcus sciuri are important human pathogens responsible for endocarditis, peritonitis, septic shock, urinary tract infection, pelvic inflammatory disease and wound infections. However, little information is known regarding the pathogenicity of S. sciuri to animals. From the pericardial fluid of a diseased piglet with exudative epidermitis (EE), we isolated a strain of Staphylococcus in pure culture. Surprisingly, this isolate was a member of S. sciuri rather than S. hyicus as identified by its biochemical traits and also by analysis of 23S ribosomal DNA using Internal Transcribed Spacer PCR. In addition, inoculation of newborn piglets with 1×10(10) CFU of the isolate by oral feeding or intra-muscular injection successfully reproduced EE in piglets, which suggested that the oral intake of the pathogen by the animals is one of the major routes of exposure. These unexpected findings prioritized S. sciuri as important zoonotic agents, which may have ramifications for human medicine

    Reply to the Comment by B. Andresen

    Full text link
    All the comments made by Andresen's comments are replied and are shown not to be pertinent. The original discussions [ABE S., Europhys. Lett. 90 (2010) 50004] about the absence of nonextensive statistical mechanics with q-entropies for classical continuous systems are reinforced.Comment: 5 pages. This is Reply to B. Andresen's Comment on the paper entitled "Essential discreteness in generalized thermostatistics with non-logarithmic entropy", Europhys. Lett. 90 (2010) 5000

    Absolute quantum yield measurements of fluorescent proteins using a plasmonic nanocavity

    Get PDF
    One of the key photophysical properties of fluorescent proteins that is most difficult to measure is the quantum yield. It describes how efficiently a fluorophore converts absorbed light into fluorescence. Its measurement using conventional methods become particularly problematic when it is unknown how many of the proposedly fluorescent molecules of a sample are indeed fluorescent (for example due to incomplete maturation, or the presence of photophysical dark states). Here, we use a plasmonic nanocavity-based method to measure absolute quantum yield values of commonly used fluorescent proteins. The method is calibration-free, does not require knowledge about maturation or potential dark states, and works on minute amounts of sample. The insensitivity of the nanocavity-based method to the presence of non-luminescent species allowed us to measure precisely the quantum yield of photo-switchable proteins in their on-state and to analyze the origin of the residual fluorescence of protein ensembles switched to the dark state

    A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    Full text link
    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito Koumoto and Takao Mori, Springer Series in Materials Science Volume 182 (2013

    Stability, dissolution, and cytotoxicity of NaYF4-upconversion nanoparticles with different coatings

    Get PDF
    Upconversion nanoparticles (UCNPs) have attracted considerable attention owing to their unique photophysical properties. Their utilization in biomedical applications depends on the understanding of their transformations under physiological conditions and their potential toxicity. In this study, NaYF4:Yb,Er UCNPs, widely used for luminescence and photophysical studies, were modified with a set of four different coordinatively bound surface ligands, i.e., citrate, alendronate (AA), ethylendiamine tetra(methylene phosphonate) (EDTMP), and poly(maleic anhydride-alt-1-octadecene) (PMAO), as well as silica coatings with two different thicknesses. Subsequently, the aging-induced release of fluoride ions in water and cell culture media and their cytotoxic profile to human keratinocytes were assessed in parallel to the cytotoxic evaluation of the ligands, sodium fluoride and the lanthanide ions. The cytotoxicity studies of UCNPs with different surface modifications demonstrated the good biocompatibility of EDTMP-UCNPs and PMAO-UCNPs, which is in line with the low amount of fluoride ions released from these samples. An efficient prevention of UCNP dissolution and release of cytotoxic ions, as well as low cytotoxicity was also observed for UCNPs with a sufficiently thick silica shell. Overall, our results provide new insights into the understanding of the contribution of surface chemistry to the stability, dissolution behavior, and cytotoxicity of UCNPs. Altogether, the results obtained are highly important for future applications of UCNPs in the life sciences and bioimaging studies

    Potential loss of nutrients from different rearing strategies for fattening pigs on pasture

    Get PDF
    Nutrient load and distribution on pasture were investigated with fattening pigs that: 1) spend a proportion of or their entire life on pasture, 2) were fed either restrictively or ad libitum, and 3) were weaned at different times of the year. The N and P retention in pigs decreased the longer they were kept on pasture. The contents of soil inorganic N and exchangeable K were significantly raised compared to the soil outside the enclosures but with no differences between treatments. Pig grazing did not affect extractable soil P. Regular moving of huts, feeding and water troughs was effective in ensuring that nutrients were more evenly distributed on the paddocks. Grass cover, as determined by spectral reflectance, was not related to the experimental treatments but only to time of year. During spring and summer, grass was present in parts of the paddocks, whereas during autumn and winter the pigs kept grass cover below 10%. Fattening pigs on pasture carries a high risk of nutrient loss and it is concluded that the most environmentally acceptable way of keeping fattening pigs on pasture involves a combination of reduced dietary N intake, reduced stocking rate and seasonal rather than all year production

    Staphylococcus sciuri Exfoliative Toxin C (ExhC) is a Necrosis-Inducer for Mammalian Cells

    Get PDF
    Staphylococcus sciuri (S. sciuri) is a rare pathogen in humans, but it can cause a wide array of human infections. Recently a S. sciuri isolate (HBXX06) was reported to cause fatal exudative epidermitis (EE) in piglets and thus considered as a potential zoonotic agent. To investigate the pathogenicity of this bacterium, we cloned exfoliative toxin C (ExhC), a major toxin of the S. sciuri isolate and performed functional analysis of the recombinant ExhC-his (rExhC) protein using in vitro cell cultures and newborn mice as models. We found that rExhC could induce necrosis in multiple cell lines and peritoneal macrophages as well as skin lesions in newborn mice, and that the rExhC-induced necrosis in cells or skin lesions in newborn mice could be completely abolished if amino acids 79-128 of rExhC were deleted or blocked with a monoclonal antibody (3E4), indicating aa 79-128 portion as an essential necrosis-inducing domain. This information contributes to further understandings of the mechanisms underlying S. sciuri infection

    Production of antihydrogen at reduced magnetic field for anti-atom trapping

    Get PDF
    We have demonstrated production of antihydrogen in a 1,,T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3,,T) and ATRAP (5,,T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3,,T, and then mix the antiprotons with positrons at 1,,T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed
    • …
    corecore