130 research outputs found

    Optimization and testing of dried antibody tube: The EuroFlow LST and PIDOT tubes as examples

    Get PDF
    Within EuroFlow, we recently developed screening tubes for hematological malignancies and immune deficiencies. Pipetting of antibodies for such 8-color 12-marker tubes however is time-consuming and prone to operational mistakes. We therefore evaluated dried formats of the lymphocytosis screening tube (LST) and of the primary immune deficiency orientation tube (PIDOT). Both tubes were evaluated on normal and/or on patient samples, comparing the mean fluorescence intensity of specific lymphocyte populations. Our data show that the dried tubes and liquid counterparts give highly comparable staining results, particularly when analyzed in multidimensional plots. In addition, the use of dried tubes may result in a reduced staining variability between different samples and thereby contributes to the generation of more robust data. Therefore, by using ready-to-use reagents in a dried single test tube format, the laboratory efficiency and quality will be improved

    Disruption of LRRK2 Does Not Cause Specific Loss of Dopaminergic Neurons in Zebrafish

    Get PDF
    Mutations in LRRK2 are genetically linked to Parkinson's disease (PD) but its normal biological function is largely unknown. Sheng et al. recently reported that deletion of the WD40 domain of LRRK2 in zebrafish specifically causes PD-like loss of neurons and behavior defect. However, our similar early study and recent confirming experiments using the same reagents reported by Sheng et al. failed to reproduce the phenotype of the loss of dopaminergic neurons, although the mRNA of LRRK2 was molecularly disrupted. Our study suggests that function of LRRK2 and its usefulness to generate zebrafish PD model needs further evaluation

    Oxidative Inactivation of Mitochondrial Aconitase Results in Iron and H2O2-Mediated Neurotoxicity in Rat Primary Mesencephalic Cultures

    Get PDF
    BACKGROUND:Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species (ROS) modify cellular targets to induce the death of neurons remains unknown. The goal of this study was to determine if oxidative inactivation of mitochondrial aconitase (m-aconitase) resulted in the release of redox-active iron (Fe2+) and hydrogen peroxide (H2O2) and whether this contributes to cell death. METHODOLOGY/PRINCIPAL FINDINGS:Incubation of rat primary mesencephalic cultures with the redox cycling herbicide paraquat (PQ2+) resulted in increased production of H2O2 and Fe2+ at times preceding cell death. To confirm the role of m-aconitase as a source of Fenton reagents and death, we overexpressed m-aconitase using an adenoviral construct thereby increasing the target available for inactivation by ROS. Co-labeling studies identified astrocytes as the predominant cell type expressing transduced m-aconitase although neurons were identified as the primary cell type dying. Oxidative inactivation of m-aconitase overexpressing cultures resulted in exacerbation of H2O2 production, Fe2+ accumulation and increased neuronal death. Increased cell death in m-aconitase overexpressing cultures was attenuated by addition of catalase and/or a cell permeable iron chelator suggesting that neuronal death occurred in part via astrocyte-derived H2O2. CONCLUSIONS:These results suggest a role of ROS-sensitive m-aconitase as a source of Fe2+ and H2O2 and as a contributing factor to neurotoxicity

    Regulation of LRRK2 Expression Points to a Functional Role in Human Monocyte Maturation

    Get PDF
    Genetic variants of Leucine-Rich Repeat Kinase 2 (LRRK2) are associated with a significantly enhanced risk for Parkinson disease, the second most common human neurodegenerative disorder. Despite major efforts, our understanding of LRRK2 biological function and regulation remains rudimentary. In the present study we analyze LRRK2 mRNA and protein expression in sub-populations of human peripheral blood mononuclear cells (PBMCs). LRRK2 mRNA and protein was found in circulating CD19+ B cells and in CD14+ monocytes, whereas CD4+ and CD8+ T cells were devoid of LRRK2 mRNA. Within CD14+ cells the CD14+CD16+ sub-population of monocytes exhibited high levels of LRRK2 protein, in contrast to CD14+CD16- cells. However both populations expressed LRRK2 mRNA. As CD14+CD16+ cells represent a more mature subset of monocytes, we monitored LRRK2 expression after in vitro treatment with various stress factors known to induce monocyte activation. We found that IFN-γ in particular robustly increased LRRK2 mRNA and protein levels in monocytes concomitant with a shift of CD14+CD16− cells towards CD14+CD16+cells. Interestingly, the recently described LRRK2 inhibitor IN-1 attenuated this shift towards CD14+CD16+ after IFN-γ stimulation. Based on these findings we speculate that LRRK2 might have a role in monocyte maturation. Our results provide further evidence for the emerging role of LRRK2 in immune cells and regulation at the transcriptional and translational level. Our data might also reflect an involvement of peripheral and brain immune cells in the disease course of PD, in line with increasing awareness of the role of the immune system in PD

    Oxr1 Is Essential for Protection against Oxidative Stress-Induced Neurodegeneration

    Get PDF
    Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease

    The HIV-1 reservoir landscape in persistent elite controllers and transient elite controllers

    Get PDF
    FUNDING. Instituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.BACKGROUND. Persistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure. METHODS. The characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq). RESULTS. PCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs. CONCLUSIONS. These results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.Instituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127, PI22/01796)Gilead Fellowships (GLD22/00147)NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHEBill and Melinda Gates Foundatio

    Parkinson's Disease DJ-1 L166P Alters rRNA Biogenesis by Exclusion of TTRAP from the Nucleolus and Sequestration into Cytoplasmic Aggregates via TRAF6

    Get PDF
    Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson's disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6

    Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    Get PDF
    Background: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson’s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/2 cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2deficient stem cells in culture. Conclusion/Significance: Parkinson’s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in othe

    Efficient Allele-Specific Targeting of LRRK2 R1441 Mutations Mediated by RNAi

    Get PDF
    Since RNA interference (RNAi) has the potential to discriminate between single nucleotide changes, there is growing interest in the use of RNAi as a promising therapeutical approach to target dominant disease-associated alleles. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to dominantly inherited Parkinson's disease (PD). We focused on three LRRK2 mutations (R1441G/C and the more prevalent G2109S) hoping to identify shRNAs that would both recognize and efficiently silence the mutated alleles preferentially over the wild-type alleles. Using a luciferase-based reporter system, we identified shRNAs that were able to specifically target the R1441G and R1441C alleles with 80% silencing efficiency. The same shRNAs were able to silence specifically mRNAs encoding either partial or full-length mutant LRRK2 fusion proteins, while having a minimal effect on endogenous wild-type LRRK2 expression when transfected in 293FT cells. Shifting of the mutant recognition site (MRS) from position 11 to other sites (4 and 16, within the 19-mer window of our shRNA design) reduced specificity and overall silencing efficiency. Developing an allele-specific RNAi of G2019S was problematic. Placement of the MRS at position 10 resulted in efficient silencing of reporters (75–80%), but failed to discriminate between mutant and wild-type alleles. Shifting of the MRS to positions 4, 5, 15, 16 increased the specificity of the shRNAs, but reduced the overall silencing efficiency. Consistent with previous reports, these data confirm that MRS placement influences both allele-specificity and silencing strength of shRNAs, while further modification to hairpin design or MRS position may lead to the development of effective G2019S shRNAs. In summary, the effective shRNA against LRRK2 R1441 alleles described herein suggests that RNAi-based therapy of inherited Parkinson's disease is a viable approach towards developing effective therapeutic interventions for this serious neurodegenerative disease
    corecore