13 research outputs found

    Involvement of Error-Prone DNA Polymerase IV in Stationary-Phase Mutagenesis in Pseudomonas putida

    No full text
    In this work we studied involvement of DNA polymerase IV (Pol IV) (encoded by the dinB gene) in stationary-phase mutagenesis in Pseudomonas putida. For this purpose we constructed a novel set of assay systems that allowed detection of different types of mutations (e.g., 1-bp deletions and different base substitutions) separately. A significant effect of Pol IV became apparent when the frequency of accumulation of 1-bp deletion mutations was compared in the P. putida wild-type strain and its Pol IV-defective dinB knockout derivative. Pol IV-dependent mutagenesis caused a remarkable increase (approximately 10-fold) in the frequency of accumulation of 1-bp deletion mutations on selective plates in wild-type P. putida populations starved for more than 1 week. No effect of Pol IV on the frequency of accumulation of base substitution mutations in starving P. putida cells was observed. The occurrence of 1-bp deletions in P. putida cells did not require a functional RecA protein. RecA independence of Pol IV-associated mutagenesis was also supported by data showing that transcription from the promoter of the P. putida dinB gene was not significantly influenced by the DNA damage-inducing agent mitomycin C. Therefore, we hypothesize that mechanisms different from the classical RecA-dependent SOS response could elevate Pol IV-dependent mutagenesis in starving P. putida cells

    Oxidative DNA Damage Defense Systems in Avoidance of Stationary-Phase Mutagenesis in Pseudomonas putida▿

    No full text
    Oxidative damage of DNA is a source of mutation in living cells. Although all organisms have evolved mechanisms of defense against oxidative damage, little is known about these mechanisms in nonenteric bacteria, including pseudomonads. Here we have studied the involvement of oxidized guanine (GO) repair enzymes and DNA-protecting enzyme Dps in the avoidance of mutations in starving Pseudomonas putida. Additionally, we examined possible connections between the oxidative damage of DNA and involvement of the error-prone DNA polymerase (Pol)V homologue RulAB in stationary-phase mutagenesis in P. putida. Our results demonstrated that the GO repair enzymes MutY, MutM, and MutT are involved in the prevention of base substitution mutations in carbon-starved P. putida. Interestingly, the antimutator effect of MutT was dependent on the growth phase of bacteria. Although the lack of MutT caused a strong mutator phenotype under carbon starvation conditions for bacteria, only a twofold increased effect on the frequency of mutations was observed for growing bacteria. This indicates that MutT has a backup system which efficiently complements the absence of this enzyme in actively growing cells. The knockout of MutM affected only the spectrum of mutations but did not change mutation frequency. Dps is known to protect DNA from oxidative damage. We found that dps-defective P. putida cells were more sensitive to sudden exposure to hydrogen peroxide than wild-type cells. At the same time, the absence of Dps did not affect the accumulation of mutations in populations of starved bacteria. Thus, it is possible that the protective role of Dps becomes essential for genome integrity only when bacteria are exposed to exogenous agents that lead to oxidative DNA damage but not under physiological conditions. Introduction of the Y family DNA polymerase PolV homologue rulAB into P. putida increased the proportion of A-to-C and A-to-G base substitutions among mutations, which occurred under starvation conditions. Since PolV is known to perform translesion synthesis past damaged bases in DNA (e.g., some oxidized forms of adenine), our results may imply that adenine oxidation products are also an important source of mutation in starving bacteria

    A DNA Polymerase V Homologue Encoded by TOL Plasmid pWW0 Confers Evolutionary Fitness on Pseudomonas putida under Conditions of Environmental Stress

    No full text
    Plasmids in conjunction with other mobile elements such as transposons are major players in the genetic adaptation of bacteria in response to changes in environment. Here we show that a large catabolic TOL plasmid, pWW0, from Pseudomonas putida carries genes (rulAB genes) encoding an error-prone DNA polymerase Pol V homologue which increase the survival of bacteria under conditions of accumulation of DNA damage. A study of population dynamics in stationary phase revealed that the presence of pWW0-derived rulAB genes in the bacterial genome allows the expression of a strong growth advantage in stationary phase (GASP) phenotype of P. putida. When rulAB-carrying cells from an 8-day-old culture were mixed with Pol V-negative cells from a 1-day-old culture, cells derived from the aged culture out-competed cells from the nonaged culture and overtook the whole culture. At the same time, bacteria from an aged culture lacking the rulAB genes were only partially able to out-compete cells from a fresh overnight culture of the parental P. putida strain. Thus, in addition to conferring resistance to DNA damage, the plasmid-encoded Pol V genes significantly increase the evolutionary fitness of bacteria during prolonged nutritional starvation of a P. putida population. The results of our study indicate that RecA is involved in the control of expression of the pWW0-encoded Pol V

    Elevated Mutation Frequency in Surviving Populations of Carbon-Starved rpoS-Deficient Pseudomonas putida Is Caused by Reduced Expression of Superoxide Dismutase and Catalase▿

    No full text
    RpoS is a bacterial sigma factor of RNA polymerase which is involved in the expression of a large number of genes to facilitate survival under starvation conditions and other stresses. The results of our study demonstrate that the frequency of emergence of base substitution mutants is significantly increased in long-term-starved populations of rpoS-deficient Pseudomonas putida cells. The increasing effect of the lack of RpoS on the mutation frequency became apparent in both a plasmid-based test system measuring Phe+ reversion and a chromosomal rpoB system detecting rifampin-resistant mutants. The elevated mutation frequency coincided with the death of about 95% of the cells in a population of rpoS-deficient P. putida. Artificial overexpression of superoxide dismutase or catalase in the rpoS-deficient strain restored the survival of cells and resulted in a decline in the mutation frequency. This indicated that, compared to wild-type bacteria, rpoS-deficient cells are less protected against damage caused by reactive oxygen species. 7,8-Dihydro-8-oxoguanine (GO) is known to be one of the most stable and frequent base modifications caused by oxygen radical attack on DNA. However, the spectrum of base substitution mutations characterized in rpoS-deficient P. putida was different from that in bacteria lacking the GO repair system: it was broader and more similar to that identified in the wild-type strain. Interestingly, the formation of large deletions was also accompanied by a lack of RpoS. Thus, the accumulation of DNA damage other than GO elevates the frequency of mutation in these bacteria. It is known that oxidative damage of proteins and membrane components, but not that of DNA, is a major reason for the death of cells. Since the increased mutation frequency was associated with a decline in the viability of bacteria, we suppose that the elevation of the mutation frequency in the surviving population of carbon-starved rpoS-deficient P. putida may be caused both by oxidative damage of DNA and enzymes involved in DNA replication and repair fidelity

    Geneetika praktikumi juhend

    No full text
    https://www.ester.ee/record=b5296841*es

    Practical Course in Genetics

    No full text
    https://www.ester.ee/record=b5376303*es

    Polymer-grafted chromatography media for the purification of enveloped virus-like particles, exemplified with HIV-1 gag VLP

    No full text
    International audiencePolymer-grafted chromatography media, especially ion exchangers, are high performance materials for protein purification. However, due to the pore size limitation, conventional chromatography beads are usually not considered for the downstream processing of large biomolecules such as virus-like particles (VLPs). Contrariwise, since the outer surface of the chromatography beads provides satisfactory binding capacity for VLPs and impurities of smaller size can bind inside of the beads, conventional porous beads should be considered for VLP capture and purification. We used HIV-1 gag VLPs with a diameter of 100-200 nm as a model to demonstrate that polymer-grafted anion exchangers are suitable for the purification of bionanoparticles. The equilibrium binding capacity was 1 × 1013 part/mL resin. Moderate salt concentration up to 100 mM NaCl did not affect binding, allowing direct loading of cell culture supernatant onto the column for purification. Dynamic binding capacity at 10% breakthrough, when loading cell culture supernatant, was approximately 6 × 1011 part/mL column; only 1-log lower than for monoliths. Endonuclease treatment of the cell culture supernatant did not increase the dynamic binding capacity, suggesting that dsDNA does not compete for the binding sites of VLPs. Nevertheless, due to simultaneous elution of particles and dsDNA, endonuclease treatment is required to reduce dsDNA contamination in the product. Proteomic analysis revealed that HIV-1 gag VLPs contain different host cell proteins in their cargo. This cargo is composed of conserved proteins and other proteins that vary from one particle population to another, as well as from batch to batch. This process allowed the separation of different particle populations. HIV-1 gag VLPs were directly captured and purified from cell culture supernatant with a total particle recovery in the elution of about 35%. Columns packed with beads can be scaled to practically any dimension and therefore a tailored design of the process is possible
    corecore