103 research outputs found

    Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements

    Get PDF
    Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity - i.e. the tendency to form two separate subgraphs - than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network

    Brains swinging in concert: cortical phase synchronization while playing guitar

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brains interact with the world through actions that are implemented by sensory and motor processes. A substantial part of these interactions consists in synchronized goal-directed actions involving two or more individuals. Hyperscanning techniques for assessing fMRI simultaneously from two individuals have been developed. However, EEG recordings that permit the assessment of synchronized neuronal activities at much higher levels of temporal resolution have not yet been simultaneously assessed in multiple individuals and analyzed in the time-frequency domain. In this study, we simultaneously recorded EEG from the brains of each of eight pairs of guitarists playing a short melody together to explore the extent and the functional significance of synchronized cortical activity in the course of interpersonally coordinated actions.</p> <p>Results</p> <p>By applying synchronization algorithms to intra- and interbrain analyses, we found that phase synchronization both within and between brains increased significantly during the periods of (i) preparatory metronome tempo setting and (ii) coordinated play onset. Phase alignment extracted from within-brain dynamics was related to behavioral play onset asynchrony between guitarists.</p> <p>Conclusion</p> <p>Our findings show that interpersonally coordinated actions are preceded and accompanied by between-brain oscillatory couplings. Presumably, these couplings reflect similarities in the temporal properties of the individuals' percepts and actions. Whether between-brain oscillatory couplings play a causal role in initiating and maintaining interpersonal action coordination needs to be clarified by further research.</p

    A clinical pathway for community-acquired pneumonia: an observational cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Six hospitals instituted a voluntary, system-wide, pathway for community acquired pneumonia (CAP). We proposed this study to determine the impact of pathway antibiotics on patient survival, hospital length of stay (LOS), and total hospital cost.</p> <p>Methods</p> <p>Data were collected for adults from six U.S. hospitals with a principal CAP discharge diagnosis code, a chest infiltrate, and medical notes indicative of CAP from 2005-2007. Pathway and non-pathway cohorts were assigned according to antibiotics received within 48 hours of admission. Pathway antibiotics included levofloxacin 750 mg monotherapy or ceftriaxone 1000 mg plus azithromycin 500 mg daily. Multivariable regression models assessed 90-day mortality, hospital LOS, total hospital cost, and total pharmacy cost.</p> <p>Results</p> <p>Overall, 792 patients met study criteria. Of these, 505 (64%) received pathway antibiotics and 287 (36%) received non-pathway antibiotics. Adjusted means and p-values were derived from Least Squares regression models that included Pneumonia Severity Index risk class, patient age, heart failure, chronic obstructive pulmonary disease, and admitting hospital as covariates. After adjustment, patients who received pathway antibiotics experienced lower adjusted 90-day mortality (<it>p </it>= 0.02), shorter mean hospital LOS (3.9 vs. 5.0 days, <it>p </it>< 0.01), lower mean hospital costs (2,485vs.2,485 vs. 3,281, <it>p </it>= 0.02), and similar mean pharmacy costs (356vs.356 vs. 442, <it>p </it>= 0.11).</p> <p>Conclusions</p> <p>Pathway antibiotics were associated with improved patient survival, hospital LOS, and total hospital cost for patients admitted to the hospital with CAP.</p

    Pituitary surgery for small prolactinomas as an alternative to treatment with dopamine agonists

    Get PDF
    Despite the fact that consensus guidelines recommend long-term dopamine agonist (DA) therapy as a first-line approach to the treatment of small prolactinoma, some patients continue to prefer a primary surgical approach. Concerns over potential adverse effects of long-term medical therapy and/or the desire to become pregnant and avoid long-term medication are often mentioned as reasons to pursue surgical removal. In this retrospective study, 34 consecutive patients (30 female, 4 male) preferably underwent primary pituitary surgery without prior DA treatment for small prolactinomas (microprolactinoma 1–10 mm, macroprolactinoma 11–20 mm) at the Department of Neurosurgery, University of Bern, Switzerland. At the time of diagnosis, 31 of 34 patients (91%) presented with symptoms. Patients with microprolactinomas had significantly lower preoperative prolactin (PRL) levels compared to patients with macroprolactinomas (median 143 Όg/l vs. 340 Όg/l). Ninety percent of symptomatic patients experienced significant improvement of their signs and symptoms upon surgery. The postoperative PRL levels (median 3.45 Όg/l) returned to normal in 94% of patients with small prolactinomas. There was no mortality and no major morbidities. One patient suffered from hypogonadotropic hypogonadism after surgery despite postoperative normal PRL levels. Long-term remission was achieved in 22 of 24 patients (91%) with microprolactinomas, and in 8 of 10 patients (80%) with macroprolactinomas after a median follow-up period of 33.5 months. Patients with small prolactinomas can safely consider pituitary surgery in a specialized centre with good chance of long-term remission as an alternative to long-term DA therapy

    A systematic review to identify areas of enhancements of pandemic simulation models for operational use at provincial and local levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, computer simulation models have supported development of pandemic influenza preparedness policies. However, U.S. policymakers have raised several <it>concerns </it>about the practical use of these models. In this review paper, we examine the extent to which the current literature already addresses these <it>concerns </it>and identify means of enhancing the current models for higher operational use.</p> <p>Methods</p> <p>We surveyed PubMed and other sources for published research literature on simulation models for influenza pandemic preparedness. We identified 23 models published between 1990 and 2010 that consider single-region (e.g., country, province, city) outbreaks and multi-pronged mitigation strategies. We developed a plan for examination of the literature based on the concerns raised by the policymakers.</p> <p>Results</p> <p>While examining the concerns about the adequacy and validity of data, we found that though the epidemiological data supporting the models appears to be adequate, it should be validated through as many updates as possible during an outbreak. Demographical data must improve its interfaces for access, retrieval, and translation into model parameters. Regarding the concern about credibility and validity of modeling assumptions, we found that the models often simplify reality to reduce computational burden. Such simplifications may be permissible if they do not interfere with the performance assessment of the mitigation strategies. We also agreed with the concern that social behavior is inadequately represented in pandemic influenza models. Our review showed that the models consider only a few social-behavioral aspects including contact rates, withdrawal from work or school due to symptoms appearance or to care for sick relatives, and compliance to social distancing, vaccination, and antiviral prophylaxis. The concern about the degree of accessibility of the models is palpable, since we found three models that are currently accessible by the public while other models are seeking public accessibility. Policymakers would prefer models scalable to any population size that can be downloadable and operable in personal computers. But scaling models to larger populations would often require computational needs that cannot be handled with personal computers and laptops. As a limitation, we state that some existing models could not be included in our review due to their limited available documentation discussing the choice of relevant parameter values.</p> <p>Conclusions</p> <p>To adequately address the concerns of the policymakers, we need continuing model enhancements in critical areas including: updating of epidemiological data during a pandemic, smooth handling of large demographical databases, incorporation of a broader spectrum of social-behavioral aspects, updating information for contact patterns, adaptation of recent methodologies for collecting human mobility data, and improvement of computational efficiency and accessibility.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore