11,073 research outputs found

    A Holistic Algorithm for Materials Requirement Planning in Collaborative Networks

    Full text link
    [EN] Collaboration has increasingly been considered a key topic within the small and medium-sized enterprises, allowing dealing with the intense competitiveness of today¿s globalised markets. The European H2020 Cloud Collaborative Manufacturing Networks Project proposes mechanisms to encourage collaboration among enterprises, through the computation of collaborative plans. Particularly, this paper focuses on the proposal of a holistic algorithm to deal with the automated and collaborative calculation of the Materials Requirement Plan. The proposed algorithm is validated in a collaborative network belonging to the automotive industry.The research leading to these results is in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 636909.Andres, B.; Poler, R.; Sanchis, R. (2017). A Holistic Algorithm for Materials Requirement Planning in Collaborative Networks. IFIP Advances in Information and Communication Technology. 560:41-50. https://doi.org/10.1007/978-3-319-65151-4_4S4150560CORDIS Europa: Factories of the Future. H2020-EU.2.1.5.1. - Technologies for Factories of the Future (2014)H2020 Project C2NET (2015). http://cordis.europa.eu/project/rcn/193440_en.htmlAndres, B., Sanchis, R., Poler, R.: A cloud platform to support collaboration in supply networks. Int. J. Prod. Manag. Eng. 4(1), 5–13 (2016)Andres, B., Sanchis, R., Lamothe, J., Saari, L., Hauser, F.: Integrated production-distribution planning optimization models: a review in collaborative networks context. Int. J. Prod. Manag. Eng. 5(1), 31–38 (2017)Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16(4–5), 439–452 (2005)Andres, B., Poler, R.: Models, guidelines and tools for the integration of collaborative processes in non-hierarchical manufacturing networks: a review. Int. J. Comput. Integr. Manuf. 2(29), 166–201 (2016)Sanchis, R., Poler, R., Lario, F.C.: Identification and analysis of Disruptions: the first step to understand and measure Enterprise Resilience. In: International Conference on Industrial Engineering and Engineering Management, pp. 424–431 (2012)Andres, B., Saari, L., Lauras, M., Eizaguirre, F.: Optimization algorithms for collaborative manufacturing and logistics processes. In: Zelm, M., Doumeingts, G., Mendonça, J.P. (eds.) Enterprise Interoperability in the Digitized and Netwroked Factory of the Future, iSTE 2016, pp. 167–173 (2016)Orbegozo, A., Andres, B., Mula, J., Lauras, M., Monteiro, C., Malheiro, M.: An overview of optimization models for integrated replenishment and production planning decisions. In: Building Bridges Between Researchers and Practitioners. Book of Abstracts of the International Joint Conference CIO-ICIEOM-IISE-AIM (IJC 2016), p. 68 (2016

    Low-temperature and high-temperature approximations for penetrable-sphere fluids. Comparison with Monte Carlo simulations and integral equation theories

    Full text link
    The two-body interaction in dilute solutions of polymer chains in good solvents can be modeled by means of effective bounded potentials, the simplest of which being that of penetrable spheres (PSs). In this paper we construct two simple analytical theories for the structural properties of PS fluids: a low-temperature (LT) approximation, that can be seen as an extension to PSs of the well-known solution of the Percus-Yevick (PY) equation for hard spheres, and a high-temperature (HT) approximation based on the exact asymptotic behavior in the limit of infinite temperature. Monte Carlo simulations for a wide range of temperatures and densities are performed to assess the validity of both theories. It is found that, despite their simplicity, the HT and LT approximations exhibit a fair agreement with the simulation data within their respective domains of applicability, so that they complement each other. A comparison with numerical solutions of the PY and the hypernetted-chain approximations is also carried out, the latter showing a very good performance, except inside the core at low temperatures.Comment: 14 pages, 8 figures; v2: some figures redone; small change

    Test of a universality ansatz for the contact values of the radial distribution functions of hard-sphere mixtures near a hard wall

    Get PDF
    Recent Monte Carlo simulation results for the contact values of polydisperse hard-sphere mixtures at a hard planar wall are considered in the light of a universality assumption made in approximate theoretical approaches. It is found that the data seem to fulfill the universality ansatz reasonably well, thus opening up the possibility of inferring properties of complicated systems from the study of simpler onesComment: 9 pages, 2 figures; v2: minor changes; to be published in the special issue of Molecular Physics dedicated to the Seventh Liblice Conference on the Statistical Mechanics of Liquids (Lednice, Czech Republic, June 11-16, 2006

    Identifying indicators of sustainable development using the global sustainability quadrant approach

    Get PDF
    Advances in information technology and global data availability have opened the door for assessments of sustainable development at a truly macro scale. It is now fairly easy to conduct a study of sustainability using the entire planet as the unit of analysis; this is precisely what this work set out to accomplish. The study began by examining some of the best known composite indicator frameworks developed to measure sustainability at the country level today. Most of these were found to value human development factors and a clean local environment, but to gravely overlook consumption of (remote) resources in relation to nature’s capacity to renew them, a basic requirement for a sustainable state. Thus, a new measuring standard is proposed, based on the Global Sustainability Quadrant approach. In a two‐dimensional plot of nations’ Human Development Index (HDI) vs. their Ecological Footprint (EF) per capita, the Sustainability Quadrant is defined by the area where both dimensions satisfy the minimum conditions of sustainable development: an HDI score above 0.8 (considered ‘high’ human development), and an EF below the fair Earth‐share of 2.063 global hectares per person. After developing methods to identify those countries that are closest to the Quadrant in the present‐day and, most importantly, those that are moving towards it over time, the study tackled the question: what indicators of performance set these countries apart? To answer this, an analysis of raw data, covering a wide array of environmental, social, economic, and governance performance metrics, was undertaken. The analysis used country rank lists for each individual metric and compared them, using the Pearson Product Moment Correlation function, to the rank lists generated by the proximity/movement relative to the Quadrant measuring methods. The analysis yielded a list of metrics which are, with a high degree of statistical significance, associated with proximity to – and movement towards – the Quadrant; most notably: Favorable for sustainable development: use of contraception, high life expectancy, high literacy rate, and urbanization. Unfavorable for sustainable development: high GDP per capita, high language diversity, high energy consumption, and high meat consumption. A momentary gain, but a burden in the long‐run: high carbon footprint and debt. These results could serve as a solid stepping stone for the development of more reliable composite index frameworks for assessing countries’ sustainability
    • 

    corecore