20 research outputs found

    FT-Raman Analysis of Cellulose based Museum Textiles: Comparison of Objects Infected and Non-infected by Fungi

    Get PDF
    It is well-known fact that the supermolecular structure of museum textiles changes during aging and biodeterioration. These structural changes can be observed by different spectroscopic methods such as FT-IR, FT-Raman, and dispersive Raman spectroscopy. The purpose of the presented research is to present the usability of FT-Raman spectroscopy method for the analysis of the cellulose structure of the biodeteriorated historical textile fibers. Although historical textiles have already been analyzed using FT-Raman spectroscopy the method has been rarely used to analyze the changes of supermolecular structure of the biodeteriorated historical textiles attacked by microorganisms. In the research, cellulose textile samples from different museums and religious institutions were analyzed. Contemporary and historical cellulose textiles were scanned by FT-Raman spectra of reference and compared to determine the supermolecular cellulose fiber structure of each material. It has been shown that structural changes such as depolymerization and crystallinity changes can be detected using FT-Raman spectroscopy. The supermolecular changes of the cellulose fiber structure have been detected in biodeteriorated as well as in historical objects not infected by microorganisms. In the spectra of biodeteriorated objects, more intensive changes of spectral features were observed compared to spectra of non-infected samples. The changes were more pronounced at the museum objects made of flax. It can be concluded that biodeterioration causes more intensive structural changes than aging. On the basis of the research work, it has been shown that FT-Raman spectroscopy method can be used for the analysis of supermolecular structure changes of cellulose textiles

    Flame retardant effectiveness of nanodispersed organophosphorus-derivative in polyamide 6 textile filament yarns

    Get PDF
    The halogen-free flame retardant (FR) polyamide 6 (PA6) composite textile filament yarns fabricated via melt-compounding have never achieved effective flame retardancy. The main reason for that is related to the agglomeration of FR additives due to their poor compatibility with PA6 polymer chains. The formed FR agglomerates substantially reduce the flame retardant effectiveness, disable continuous melt-spinning process due to clogging of the filters and spinnerets, and significantly impair fibre tensile properties. Therefore, the goal of this study was to investigate how lowering of the FR additive size to the nanoscopic level affects melt-spinning process and flame retardancy of the nanocomposite PA6 filament yarns. To this aim, we established a new scalable approach for the production of new-generation PA6/FR nanocomposite filament yarns with uniformly distributed nano-dispersed halogen-free FR. So, instead of mixing FR additive with PA6 melt, we rather chose a step back, i.e. mixing of FR additive with ε-caprolactam melt and performing the in situ polymerization

    In situ prepared polyamide 6/DOPO-derivative nanocomposite for melt-spinning of flame retardant textile filaments

    Get PDF
    Abstract A novel flame retardant polyamide 6 (PA6)/bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-derivative (PHED) nanocomposite textile filament yarns were developed. The scalable production approach includes in situ water-catalyzed ring-opening polymerization of e-caprolactam in the presence of the flame retardant PHED followed by melt-spinning of nanocomposite filament yarns and production of knitted fabrics. The specific chemical structure of the PHED additive enabled its excellent miscibility with molten e-caprolactam and the uninterrupted polymerization of e-caprolactam. The produced PA6/PHED nanocomposite was characterized by the preserved molecular structure of the polyamide 6 and uniformly distributed nano-dispersed FR at concentrations of 10 and 15 wt %. The PA6/PHED nanocomposite structure was successfully preserved after the melt-spinning processing. The PA6 nanocomposite filament yarns at the applied 15 wt %. loading of PHED showed (a) increased thermo-oxidative stability compared to neat PA6 up to 500 °C, with a 43% higher residue at 500 °C and (b) self-extinguishment of fiber strand and knitted samples within 1 s in standard vertical flame spread tests (ASTM D6413), followed by the significant reduction of the melt-dripping and the melt-drop flammability. Additionally, 1.2 mm-tick PA6/PHED bar samples achieved a V0 rating in UL94 vertical burning test at the applied 10 wt % concentration of PHED. This innovative and scalable approach could pave the way for the production of new-generation nanocomposite PA6 filament yarns with self-extinguishing properties at the macro-scale, which would be highly beneficial for increasing fire safety, whilst maintaining the use of a DOPO derivative at the minimum level

    Functionalization of woven fabrics with PBT yarns

    Full text link
    Elasticity and recovery are important for clothing comfort, especially in the manufacture of apparel and sportswear. Recently, yarns containing PBT (polybutylene terephthalate), which are able to develop good elastic properties with high recovery after a finishing process (e.g., thermal treatment), have been used for this purpose. The aim of this work is to give a comprehensive overview of the use of PBT yarns in woven structure, with the aim of improving the elastic properties of cotton-like fabrics. The experimental part was divided into three main sequences to investigate the fabric properties (physical, elastic, UPF, comfort) influenced by (1) PBT-containing yarn structure, (2) weave and fabric structure (basic weaves and complex weaves) with PBT in weft direction, and (3) processing sequence—thermal treatment of PBT yarns or fabrics after weaving. According to the results, PBT-containing yarns have great potential for the production of lightweight elastic fabrics. The advantages of improving the elastic properties of fabrics by incorporating a relatively small amount of PBT yarns into the fabric only in certain areas, thereby minimally affecting the production costs, are demonstrated by a product with partially elastic areas obtained after thermal treatment

    Characterization of Polyamide 6/Multilayer Graphene Nanoplatelet Composite Textile Filaments Obtained Via In Situ Polymerization and Melt Spinning

    No full text
    Studies of the production of fiber-forming polyamide 6 (PA6)/graphene composite material and melt-spun textile fibers are scarce, but research to date reveals that achieving the high dispersion state of graphene is the main challenge to nanocomposite production. Considering the significant progress made in the industrial mass production of graphene nanoplatelets (GnPs), this study explored the feasibility of production of PA6/GnPs composite fibers using the commercially available few-layer GnPs. To this aim, the GnPs were pre-dispersed in molten ε-caprolactam at concentrations equal to 1 and 2 wt %, and incorporated into the PA6 matrix by the in situ water-catalyzed ring-opening polymerization of ε-caprolactam, which was followed by melt spinning. The results showed that the incorporated GnPs did not markedly influence the melting temperature of PA6 but affected the crystallization temperature, fiber bulk structure, crystallinity, and mechanical properties. Furthermore, GnPs increased the PA6 complex viscosity, which resulted in the need to adjust the parameters of melt spinning to enable continuous filament production. Although the incorporation of GnPs did not provide a reinforcing effect of PA6 fibers and reduced fiber tensile properties, the thermal stability of the PA6 fiber increased. The increased melt viscosity and graphene anti-dripping properties postponed melt dripping in the vertical flame spread test, which consequently prolonged burning within the samples
    corecore