11,842 research outputs found

    Convection-Dominated Accretion Flows

    Full text link
    Non-radiating, advection-dominated, accretion flows are convectively unstable. We calculate the two-dimensional (r-theta) structure of such flows assuming that (1) convection transports angular momentum inwards, opposite to normal viscosity and (2) viscous transport by other mechanisms (e.g., magnetic fields) is weak (alpha << 1). Under such conditions convection dominates the dynamics of the accretion flow and leads to a steady state structure that is marginally stable to convection. We show that the marginally stable flow has a constant temperature and rotational velocity on spherical shells, a net flux of energy from small to large radii, zero net accretion rate, and a radial density profile proportional to r^{-1/2}, flatter than the r^{-3/2} profile characteristic of spherical accretion flows. This solution accurately describes the full two-dimensional structure of recent axisymmetric numerical simulations of advection-dominated accretion flows.Comment: final version accepted by ApJ; discussion expanded, references adde

    The Power of Axisymmetric Pulsar

    Full text link
    Stationary force-free magnetosphere of an axisymmetric pulsar is shown to have a separatrix inclination angle of 77.3∘^\circ. The electromagnetic field has an R−1/2R^{-1/2} singularity inside the separatrix near the light cylinder. A numerical simulation of the magnetosphere which crudely reproduces these properties is presented. The numerical results are used to estimate the power of an axisymmetric pulsar: L=(1±0.1)μ2Ω4/c3L=(1\pm 0.1)\mu^2\Omega^4/c^3. A need for a better numerical simulation is pointed out.Comment: 9 page

    Quantum computing with magnetic atoms in optical lattices of reduced periodicity

    Get PDF
    We investigate the feasibility of combining Raman optical lattices with a quantum computing architecture based on lattice-confined magnetically interacting neutral atoms. A particular advantage of the standing Raman field lattices comes from reduced interatomic separations leading to increased interatomic interactions and improved multi-qubit gate performance. Specifically, we analyze a J=3/2J=3/2 Zeeman system placed in +−σ−% \sigma _{+}-\sigma_{-} Raman fields which exhibit λ/4\lambda /4 periodicity. We find that the resulting CNOT gate operations times are in the order of millisecond. We also investigate motional and magnetic-field induced decoherences specific to the proposed architecture

    Photon acceleration in variable ultra-relativistic outflows and high-energy spectra of Gamma-Ray Bursts

    Get PDF
    MeV seed photons produced in shocks in a variable ultra-relativistic outflow gain energy by the Fermi mechanism, because the photons Compton scatter off relativistically colliding shells. The Fermi-modified high-energy photon spectrum has a non-universal slope and a universal cutoff. A significant increase in the total radiative efficiency is possible. In some gamma ray bursts, most of the power might be emitted at the high-energy cutoff for this mechanism, which would be close to 100 MeV for outflows with a mean bulk Lorentz factor of 100.Comment: 8 pages, submitted to ApJ

    Radiation Front Sweeping the Ambient Medium of Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts (GRBs) are emitted by relativistic ejecta from powerful cosmic explosions. Their light curves suggest that the gamma-ray emission occurs at early stages of the ejecta expansion, well before it decelerates in the ambient medium. If so, the launched gamma-ray front must overtake the ejecta and sweep the ambient medium outward. As a result a gap is opened between the ejecta and the medium that surfs the radiation front ahead. Effectively, the ejecta moves in a cavity until it reaches a radius R_{gap}=10^{16}E_{54}^{1/2} cm where E is the isotropic energy of the GRB. At R=R_{gap} the gap is closed, a blast wave forms and collects the medium swept by radiation. Further development of the blast wave is strongly affected by the leading radiation front: the front plays the role of a precursor where the medium is loaded with e+- pairs and preaccelerated just ahead of the blast. It impacts the emission from the blast at R < R_{load}=5R_{gap} (the early afterglow). A spectacular observational effect results: GRB afterglows should start in optical/UV and evolve fast (< min) to a normal X-ray afterglow. The early optical emission observed in GRB 990123 may be explained in this way. The impact of the front is especially strong if the ambient medium is a wind from a massive progenitor of the GRB. In this case three phenomena are predicted: (1) The ejecta decelerates at R<R_{load} producing a lot of soft radiation. (2) The light curve of soft emission peaks at t_{peak}=40(1+z)E_{54}^{1/2}(Gamma_{ej}/100)^{-2} s where Gamma_{ej} is the Lorentz factor of the ejecta. Given measured redshift z and t_{peak}, one finds Gamma_{ej}. (3) The GRB acquires a spectral break at 5 - 50 MeV because harder photons are absorbed by radiation scattered in the wind.Comment: 20 pages, accepted to Ap

    Global geometry of two-dimensional charged black holes

    Full text link
    The semiclassical geometry of charged black holes is studied in the context of a two-dimensional dilaton gravity model where effects due to pair-creation of charged particles can be included in a systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of the spacetime geometry. At the classical level, a static solution describing an eternal black hole has timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole. Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data exhibits critical behavior at the threshold for black hole formation.Comment: REVTeX, 13 pages, 12 figures; Reference adde

    Persistent current noise and electron-electron interactions

    Full text link
    We analyze fluctuations of persistent current (PC) produced by a charged quantum particle moving in a ring and interacting with a dissipative environment formed by diffusive electron gas. We demonstrate that in the presence of interactions such PC fluctuations persist down to zero temperature. In the case of weak interactions and/or sufficiently small values of the ring radius RR PC noise remains coherent and can be tuned by external magnetic flux Φx\Phi_x piercing the ring. In the opposite limit of strong interactions and/or large values of RR fluctuations in the electronic bath strongly suppress quantum coherence of the particle down to T=0T=0 and induce incoherent Φx\Phi_x-independent current noise in the ring which persists even at Φx=0\Phi_x=0 when the average PC is absent.Comment: 12 pages, 8 figure

    Semi-classical geometry of charged black holes

    Full text link
    At the classical level, two-dimensional dilaton gravity coupled to an abelian gauge field has charged black hole solutions, which have much in common with four-dimensional Reissner-Nordstrom black holes, including multiple asymptotic regions, timelike curvature singularities, and Cauchy horizons. The black hole spacetime is, however, significantly modified by quantum effects, which can be systematically studied in this two-dimensional context. In particular, the back-reaction on the geometry due to pair-creation of charged fermions destabilizes the inner horizon and replaces it with a spacelike curvature singularity. The semi-classical geometry has the same global topology as an electrically neutral black hole.Comment: REVTeX, 4 pages, 2 figures; references adde
    • …
    corecore