35 research outputs found

    Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator

    Full text link
    It is shown that the generation linewidth of an auto-oscillator with a nonlinear frequency shift (i.e. an auto-oscillator in which frequency depends on the oscillation amplitude) is substantially larger than the linewidth of a conventional quasi-linear auto-oscillator due to the renormalization of the phase noise caused by the nonlinearity of the oscillation frequency. The developed theory, when applied to a spin-torque nano-contact auto-oscillator, predicts a minimum of the generation linewidth when the nano-contact is magnetized at a critical angle to its plane, corresponding to the minimum nonlinear frequency shift, in good agreement with recent experiments.Comment: 4 pages, 2 figure

    Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators

    Full text link
    Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle θe\theta_e between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with θe\theta_e, while the power of the self-localized mode has a broad maximum near θe=40\theta_e = 40 deg, and exponentially vanishes near the critical angle θe=58\theta_e = 58 deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles 58<θe<9058<\theta_e<90 deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.Comment: 8 pages, 6 figure

    Generation of spin-wave dark solitons with phase engineering

    Full text link
    We generate experimentally spin-wave envelope dark solitons from rectangular high-frequency dark input pulses with externally introduced phase shifts in yttrium-iron garnet magnetic fims. We observe the generation of both odd and even numbers of magnetic dark solitons when the external phase shift varies. The experimental results are in a good qualitative agreement with the theory of the dark-soliton generation in magnetic films developed earlier [Phys. Rev. Lett. 82, 2583 (1999)].Comment: 6 pages, including 7 figures, submitted to Phys. Rev.

    Critical velocity for the vortex core reversal in perpendicular bias magnetic field

    Full text link
    For a circular magnetic nanodot in a vortex ground state we study how the critical velocity vcv_c of the vortex core reversal depends on the magnitude HH of a bias magnetic field applied perpendicularly to the dot plane. We find that, similarly to the case HH = 0, the critical velocity does not depend on the size of the dot. The critical velocity is dramatically reduced when the negative (i.e. opposite to the vortex core direction) bias field approaches the value, at which a \emph{static} core reversal takes place. A simple analytical model shows good agreement with our numerical result.Comment: 4 pages, 2 figure

    Generation of spin-wave envelope dark solitons

    No full text
    We demonstrate that in nonlinear systems with small group velocity any (odd or even) number of dark solitons can be generated by an input pulse without initially introduced phase modulation. We propose a theoretical explanation of the earlier reported experimental results on the generation of magnetic envelope dark solitons

    Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts

    Full text link
    Through detailed experimental studies of the angular dependence of spin wave excitations in nanocontact-based spin-torque oscillators, we demonstrate that two distinct spin wave modes can be excited, with different frequency, threshold currents and frequency tuneability. Using analytical theory and micromagnetic simulations we identify one mode as an exchange-dominated propagating spin wave, and the other as a self-localized nonlinear spin wave bullet. Wavelet-based analysis of the simulations indicates that the apparent simultaneous excitation of both modes results from rapid mode hopping induced by the Oersted field.Comment: 5 pages, 3 figure

    Noise properties of a resonance-type spin-torque microwave detector

    Full text link
    We analyze performance of a resonance-type spin-torque microwave detector (STMD) in the presence of noise and reveal two distinct regimes of STMD operation. In the first (high-frequency) regime the minimum detectable microwave power PminP_{\rm min} is limited by the low-frequency Johnson-Nyquist noise and the signal-to-noise ratio (SNR) of STMD is proportional to the input microwave power PRFP_{\rm RF}. In the second (low-frequency) regime PminP_{\rm min} is limited by the magnetic noise, and the SNR is proportional to PRF\sqrt{P_{\rm RF}}. The developed formalism can be used for the optimization of the practical noise-handling parameters of a STMD.Comment: 3 pages, 2 figure

    Parametric resonance of magnetization excited by electric field

    Full text link
    Manipulation of magnetization by electric field is a central goal of spintronics because it enables energy-efficient operation of spin-based devices. Spin wave devices are promising candidates for low-power information processing but a method for energy-efficient excitation of short-wavelength spin waves has been lacking. Here we show that spin waves in nanoscale magnetic tunnel junctions can be generated via parametric resonance induced by electric field. Parametric excitation of magnetization is a versatile method of short-wavelength spin wave generation, and thus our results pave the way towards energy-efficient nanomagnonic devices
    corecore