75 research outputs found

    Towards Quantitative Classification of Folded Proteins in Terms of Elementary Functions

    Full text link
    A comparative classification scheme provides a good basis for several approaches to understand proteins, including prediction of relations between their structure and biological function. But it remains a challenge to combine a classification scheme that describes a protein starting from its well organized secondary structures and often involves direct human involvement, with an atomary level Physics based approach where a protein is fundamentally nothing more than an ensemble of mutually interacting carbon, hydrogen, oxygen and nitrogen atoms. In order to bridge these two complementary approaches to proteins, conceptually novel tools need to be introduced. Here we explain how the geometrical shape of entire folded proteins can be described analytically in terms of a single explicit elementary function that is familiar from nonlinear physical systems where it is known as the kink-soliton. Our approach enables the conversion of hierarchical structural information into a quantitative form that allows for a folded protein to be characterized in terms of a small number of global parameters that are in principle computable from atomary level considerations. As an example we describe in detail how the native fold of the myoglobin 1M6C emerges from a combination of kink-solitons with a very high atomary level accuracy. We also verify that our approach describes longer loops and loops connecting α\alpha-helices with β\beta-strands, with same overall accuracy.Comment: 3 figure

    Soliton concepts and the protein structure

    Full text link
    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion, from a relatively small number of components. Here we propose to identify the modular building blocks of proteins with the dark soliton solution of a generalized discrete nonlinear Schrodinger equation. For this we show that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop specific parameters and we identify their possible values in Protein Data Bank. We show that with a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop, we cover over 90% of all proteins with experimental accuracy. We also present two examples that describe how the loop library can be employed both to model and to analyze the structure of folded proteins.Comment: 7 pages 6 fig

    stairs and fire

    Get PDF

    Discutindo a educação ambiental no cotidiano escolar: desenvolvimento de projetos na escola formação inicial e continuada de professores

    Get PDF
    A presente pesquisa buscou discutir como a Educação Ambiental (EA) vem sendo trabalhada, no Ensino Fundamental e como os docentes desta escola compreendem e vem inserindo a EA no cotidiano escolar., em uma escola estadual do município de Tangará da Serra/MT, Brasil. Para tanto, realizou-se entrevistas com os professores que fazem parte de um projeto interdisciplinar de EA na escola pesquisada. Verificou-se que o projeto da escola não vem conseguindo alcançar os objetivos propostos por: desconhecimento do mesmo, pelos professores; formação deficiente dos professores, não entendimento da EA como processo de ensino-aprendizagem, falta de recursos didáticos, planejamento inadequado das atividades. A partir dessa constatação, procurou-se debater a impossibilidade de tratar do tema fora do trabalho interdisciplinar, bem como, e principalmente, a importância de um estudo mais aprofundado de EA, vinculando teoria e prática, tanto na formação docente, como em projetos escolares, a fim de fugir do tradicional vínculo “EA e ecologia, lixo e horta”.Facultad de Humanidades y Ciencias de la Educació

    Giant magnetocaloric effect in composites based on polymeric matrix and manganese arsenide

    No full text
    A field and/or temperature hysteresis is more than just an interesting incomprehensibility that occurs in materials with a first-order magnetic transition. Indeed, the reversibility of the magnetocaloric effect (MCE), being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, the polymer matrix composites with MnAs powder as reinforcing material were obtained and its MCE by direct method was studied. The influence of composite preparation process on the MCE was investigated. It was found that the MCE of bulk MnAs shows strong temperature hysteresis caused by magnetostructural transition from paramagnetic to ferromagnetic state, which also leads to an irreversible MCE at cooling at first magnetization. The reversible MCE of bulk MnAs in field 12.5 kOe is ΔT ∼ 0.4 K. It was shown that Mn-based polymeric composite cured in aligned magnetic field presents a reinforcement of the MCE temperature hysteresis. Thus, the MCE value in aligned composite is less than the value of the MCE in the bulk MnAs. It was shown that the decreasing of linear size of MnAs grains in the polymeric composite leads to sharp decreasing of the MCE to value of 0.05 K. It was established that the optimal properties, such as giant MCE and low temperature hysteresis, are found for composite hardened under pressure of 10 kBar. In this composite an increase of reversible MCE (compared to the bulk MnAs) till to the value of ΔT ∼ 1.2K was observed

    Giant magnetocaloric effect in composites based on polymeric matrix and manganese arsenide

    No full text
    A field and/or temperature hysteresis is more than just an interesting incomprehensibility that occurs in materials with a first-order magnetic transition. Indeed, the reversibility of the magnetocaloric effect (MCE), being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, the polymer matrix composites with MnAs powder as reinforcing material were obtained and its MCE by direct method was studied. The influence of composite preparation process on the MCE was investigated. It was found that the MCE of bulk MnAs shows strong temperature hysteresis caused by magnetostructural transition from paramagnetic to ferromagnetic state, which also leads to an irreversible MCE at cooling at first magnetization. The reversible MCE of bulk MnAs in field 12.5 kOe is ΔT ∼ 0.4 K. It was shown that Mn-based polymeric composite cured in aligned magnetic field presents a reinforcement of the MCE temperature hysteresis. Thus, the MCE value in aligned composite is less than the value of the MCE in the bulk MnAs. It was shown that the decreasing of linear size of MnAs grains in the polymeric composite leads to sharp decreasing of the MCE to value of 0.05 K. It was established that the optimal properties, such as giant MCE and low temperature hysteresis, are found for composite hardened under pressure of 10 kBar. In this composite an increase of reversible MCE (compared to the bulk MnAs) till to the value of ΔT ∼ 1.2K was observed

    Study of Various Photomultiplier Tubes with Muon Beams And Cerenkov Light Produced in Electron Showers

    No full text
    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large size signal when their windows were traversed by energetic charged particles. This signal, which is due to Cerenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of four different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For the four anode PMT, a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to Cerenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superior performance of particular PMTs was observed

    Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at (s)\sqrt(s) = 0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at sqrt(s) = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(charged)/d(eta) for |eta| < 0.5, are 3.48 +/- 0.02 (stat.) +/- 0.13 (syst.) and 4.47 +/- 0.04 (stat.) +/- 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p-pbar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pppp collisions at s\sqrt{s} = 7 TeV

    No full text
    Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at s=7\sqrt{s} = 7~TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity \dnchdeta|_{|\eta| < 0.5} = 5.78\pm 0.01\stat\pm 0.23\syst for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from s=0.9\sqrt{s} = 0.9 to 7~TeV is 66.1\%\pm 1.0\%\stat\pm 4.2\%\syst. The mean transverse momentum is measured to be 0.545\pm 0.005\stat\pm 0.015\syst\GeVc. The results are compared with similar measurements at lower energies.Charged-hadron transverse-momentum and pseudorapidity distributions in proton-proton collisions at sqrt(s) = 7 TeV are measured with the inner tracking system of the CMS detector at the LHC. The charged-hadron yield is obtained by counting the number of reconstructed hits, hit-pairs, and fully reconstructed charged-particle tracks. The combination of the three methods gives a charged-particle multiplicity per unit of pseudorapidity, dN(charged)/d(eta), for |eta| < 0.5, of 5.78 +/- 0.01 (stat) +/- 0.23 (syst) for non-single-diffractive events, higher than predicted by commonly used models. The relative increase in charged-particle multiplicity from sqrt(s) = 0.9 to 7 TeV is 66.1% +/- 1.0% (stat) +/- 4.2% (syst). The mean transverse momentum is measured to be 0.545 +/- 0.005 (stat) +/- 0.015 (syst) GeV/c. The results are compared with similar measurements at lower energies
    corecore