7,199 research outputs found

    Current-phase relation of the SNS junction in a superconducting loop

    Full text link
    We study the current-phase relation of the superconductor/normal/superconductor (SNS) junction imbedded in a superconducting loop. Considering the current conservation and free energy minimum conditions, we obtain the persistent currents of the normal/superconductor (NS) loop. At finite temperature we can explain the experimentally observed highly non-sinusoidal currents which have maxima near the zero external flux.Comment: 7 pages, 3 figures, version to appear in Europhys. Let

    Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions

    Get PDF
    We theoretically investigate heat transport in hybrid normal metal-superconductor (NS) nanojunctions focusing on the effect of thermal rectification. We show that the heat diode effect in the junction strongly depends on the transmissivity and the nature of the NS contact. Thermal rectification efficiency can reach up to 123% for a fully-transmissive ballistic junction and up to 84% in diffusive NS contacts. Both values exceed the rectification efficiency of a NIS tunnel junction (I stands for an insulator) by a factor close to 5 and 3, respectively. Furthermore, we show that for NS point-contacts with low transmissivity, inversion of the heat diode effect can take place. Our results could prove useful for tailoring heat management at the nanoscale, and for mastering thermal flux propagation in low-temperature caloritronic nanocircuitry.Comment: 4+ pages, 3 color figure

    Relativistic transfer ionization and the Breit interaction

    Full text link
    We consider correlated transfer ionization in relativistic collisions between a highly charged ion and a light atom. In this process two quasi-free electrons of the atom interact with each other during the short collision time that results in capture of one of them by the ion and emission of the other. We show that this process is strongly influenced by the generalized Breit interaction already at modest relativistic impact energies.Comment: 5 pages, 4 figure

    Density of states in d-wave superconductors of finite size

    Get PDF
    We consider the effect of the finite size in the ab-plane on the surface density of states (DoS) in clean d-wave superconductors. In the bulk, the DoS is gapless along the nodal directions, while the presence of a surface leads to formation of another type of the low-energy states, the midgap states with zero energy. We demonstrate that finiteness of the superconductor in one of dimensions provides the energy gap for all directions of quasiparticle motion except for \theta=45 degrees (\theta is the angle between the trajectory and the surface normal); then the angle-averaged DoS behaves linearly at small energies. This result is valid unless the crystal is 0- or 45-oriented (\alpha \ne 0 or 45 degrees, where \alpha is the angle between the a-axis and the surface normal). In the special case of \alpha=0, the spectrum is gapped for all trajectories \theta; the angle-averaged DoS is also gapped. In the special case of \alpha=45, the spectrum is gapless for all trajectories \theta; the angle-averaged DoS is then large at low energies. In all the cases, the angle-resolved DoS consists of energy bands that are formed similarly to the Kronig-Penney model. The analytical results are confirmed by a self-consistent numerical calculation.Comment: 9 pages (including 5 EPS figures), REVTeX

    Spectrum of Andreev Bound States in a Molecule Embedded Inside a Microwave-Excited Superconducting Junction

    Get PDF
    Non-dissipative Josephson current through nanoscale superconducting constrictions is carried by spectroscopically sharp energy states, so-called Andreev bound states. Although theoretically predicted almost 40 years ago, no direct spectroscopic evidence of these Andreev bound states exists to date. We propose a novel type of spectroscopy based on embedding a superconducting constriction, formed by a single-level molecule junction, in a microwave QED cavity environment. In the electron-dressed cavity spectrum we find a polariton excitation at twice the Andreev bound state energy, and a superconducting-phase dependent ac Stark shift of the cavity frequency. Dispersive measurement of this frequency shift can be used for Andreev bound state spectroscopy.Comment: Published version; 4+ pages, 3 figure

    Fluctuations of the Josephson current and electron-electron interactions in superconducting weak links

    Full text link
    We derive a microscopic effective action for superconducting contacts with arbitrary transmission distribution of conducting channels. Provided fluctuations of the Josephson phase remain sufficiently small our formalism allows to fully describe fluctuation and interaction effects in such systems. As compared to the well studied tunneling limit our analysis yields a number of qualitatively new features which occur due to the presence of subgap Andreev bound states in the system. We investigate the equilibrium supercurrent noise and evaluate the electron-electron interaction correction to the Josephson current across superconducting contacts. At T=0 this correction is found to vanish for fully transparent contacts indicating the absence of Coulomb effects in this limit.Comment: 12 pages, 4 figure

    Supercurrent transferring through c-axis cuprate Josephson junctions with thick normal-metal-bridge

    Full text link
    With simple but exactly solvable model, we investigate the supercurrent transferring through the c-axis cuprate superconductor-normal metal-superconductor junctions with the clean normal metal much thicker than its coherence length. It is shown that the supercurrent as a function of thickness of the normal metal decreases much slower than the exponential decaying expected by the proximity effect. The present result may account for the giant proximity effect observed in the c-axis cuprate SNS junctions.Comment: 6 pages, 4 figure
    • …
    corecore