541 research outputs found

    What makes a crystal supersolid ?

    Get PDF
    For nearly half a century the supersolid phase of matter has remained mysterious, not only eluding experimental observation, but also generating a great deal of controversy among theorists. Recent discovery of what is interpreted as a non-classical moment of inertia at low temperature in solid He-4 has elicited much excitement as a possible first observation of a supersolid phase. In the two years following the discovery, however, more puzzles than answers have been provided to the fundamental issue of whether the supersolid phase exists, in helium or any other naturally occurring condensed matter system. Presently, there is no established theoretical framework to understand the body of experimental data on He-4. Different microscopic mechanisms that have been suggested to underlie superfluidity in a perfect quantum crystal do not seem viable for \he4, for which a wealth of experimental and theoretical evidence points to an insulating crystalline ground state. This perspective addresses some of the outstanding problems with the interpretation of recent experimental observations of the apparent superfluid response in He-4 (seen now by several groups) and discusses various scenarios alternative to the homogeneous supersolid phase, such as superfluidity induced by extended defects of the crystalline structure which include grain boundaries, dislocations, anisotropic stresses, etc. Can a metastable superfluid "glassy" phase exist, and can it be relevant to some of the experimental observations ? One of the most interesting and unsolved fundamental questions is what interatomic potentials, given the freedom to design one, can support an ideal supersolid phase in continuous space, and can they be found in Nature.Comment: Perspective to appear in Advances in Physics, 25 pages, 7 figure

    Violation of the London Law and Onsager-Feynman quantization in multicomponent superconductors

    Full text link
    Non-classical response to rotation is a hallmark of quantum ordered states such as superconductors and superfluids. The rotational responses of all currently known single-component "super" states of matter (superconductors, superfluids and supersolids) are largely described by two fundamental principles and fall into two categories according to whether the systems are composed of charged or neutral particles: the London law relating the angular velocity to a subsequently established magnetic field and the Onsager-Feynman quantization of superfluid velocity. These laws are theoretically shown to be violated in a two-component superconductor such as the projected liquid metallic states of hydrogen and deuterium at high pressures. The rotational responses of liquid metallic hydrogen or deuterium identify them as a new class of dissipationless states; they also directly point to a particular experimental route for verification of their existence.Comment: Nature Physics in print. This is an early version of the paper. The final version will be posted 6 months after its publication Nature Physics, according to the journal polic

    Why does a metal-superconductor junction have a resistance?

    Get PDF
    This is a tutorial article based on a lecture delivered in June 1999 at the NATO Advanced Study Institute in Ankara. The phenomenon of Andreev reflection is introduced as the electronic analogue of optical phase-conjugation. In the optical problem, a disordered medium backed by a phase-conjugating mirror can become completely transparent. Yet, a disordered metal connected to a superconductor has the same resistance as in the normal state. The resolution of this paradox teaches us a fundamental difference between phase conjugation of light and electrons.Comment: 12 pages, 5 postscript figures [v2: all figures inline

    Inverse spin-s portrait and representation of qudit states by single probability vectors

    Full text link
    Using the tomographic probability representation of qudit states and the inverse spin-portrait method, we suggest a bijective map of the qudit density operator onto a single probability distribution. Within the framework of the approach proposed, any quantum spin-j state is associated with the (2j+1)(4j+1)-dimensional probability vector whose components are labeled by spin projections and points on the sphere. Such a vector has a clear physical meaning and can be relatively easily measured. Quantum states form a convex subset of the 2j(4j+3) simplex, with the boundary being illustrated for qubits (j=1/2) and qutrits (j=1). A relation to the (2j+1)^2- and (2j+1)(2j+2)-dimensional probability vectors is established in terms of spin-s portraits. We also address an auxiliary problem of the optimum reconstruction of qudit states, where the optimality implies a minimum relative error of the density matrix due to the errors in measured probabilities.Comment: 23 pages, 4 figures, PDF LaTeX, submitted to the Journal of Russian Laser Researc

    Random Matrix Theory and Chiral Symmetry in QCD

    Full text link
    Random matrix theory is a powerful way to describe universal correlations of eigenvalues of complex systems. It also may serve as a schematic model for disorder in quantum systems. In this review, we discuss both types of applications of chiral random matrix theory to the QCD partition function. We show that constraints imposed by chiral symmetry and its spontaneous breaking determine the structure of low-energy effective partition functions for the Dirac spectrum. We thus derive exact results for the low-lying eigenvalues of the QCD Dirac operator. We argue that the statistical properties of these eigenvalues are universal and can be described by a random matrix theory with the global symmetries of the QCD partition function. The total number of such eigenvalues increases with the square root of the Euclidean four-volume. The spectral density for larger eigenvalues (but still well below a typical hadronic mass scale) also follows from the same low-energy effective partition function. The validity of the random matrix approach has been confirmed by many lattice QCD simulations in a wide parameter range. Stimulated by the success of the chiral random matrix theory in the description of universal properties of the Dirac eigenvalues, the random matrix model is extended to nonzero temperature and chemical potential. In this way we obtain qualitative results for the QCD phase diagram and the spectrum of the QCD Dirac operator. We discuss the nature of the quenched approximation and analyze quenched Dirac spectra at nonzero baryon density in terms of an effective partition function. Relations with other fields are also discussed.Comment: invited review article for Ann. Rev. Nucl. Part. Sci., 61 pages, 11 figures, uses ar.sty (included); references added and typos correcte

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    R-mode oscillations and rocket effect in rotating superfluid neutron stars. I. Formalism

    Full text link
    We derive the hydrodynamical equations of r-mode oscillations in neutron stars in presence of a novel damping mechanism related to particle number changing processes. The change in the number densities of the various species leads to new dissipative terms in the equations which are responsible of the {\it rocket effect}. We employ a two-fluid model, with one fluid consisting of the charged components, while the second fluid consists of superfluid neutrons. We consider two different kind of r-mode oscillations, one associated with comoving displacements, and the second one associated with countermoving, out of phase, displacements.Comment: 10 page

    Ultra-Sensitive Hot-Electron Nanobolometers for Terahertz Astrophysics

    Full text link
    The background-limited spectral imaging of the early Universe requires spaceborne terahertz (THz) detectors with the sensitivity 2-3 orders of magnitude better than that of the state-of-the-art bolometers. To realize this sensitivity without sacrificing operating speed, novel detector designs should combine an ultrasmall heat capacity of a sensor with its unique thermal isolation. Quantum effects in thermal transport at nanoscale put strong limitations on the further improvement of traditional membrane-supported bolometers. Here we demonstrate an innovative approach by developing superconducting hot-electron nanobolometers in which the electrons are cooled only due to a weak electron-phonon interaction. At T<0.1K, the electron-phonon thermal conductance in these nanodevices becomes less than one percent of the quantum of thermal conductance. The hot-electron nanobolometers, sufficiently sensitive for registering single THz photons, are very promising for submillimeter astronomy and other applications based on quantum calorimetry and photon counting.Comment: 19 pages, 3 color figure

    Three "universal" mesoscopic Josephson effects

    Get PDF
    1. Introduction 2. Supercurrent from Excitation Spectrum 3. Excitation Spectrum from Scattering Matrix 4. Short-Junction Limit 5. Universal Josephson Effects 5.1 Quantum Point Contact 5.2 Quantum Dot 5.3 Disordered Point Contact (Average supercurrent, Supercurrent fluctuations)Comment: 21 pages, 2 figures; legacy revie
    • 

    corecore