62 research outputs found

    Larval outbreaks in West Greenland:instant and subsequent effects on tundra ecosystem productivity and CO<sub>2</sub> exchange

    No full text
    Insect outbreaks can have important consequences for tundra ecosystems. In this study, we synthesise available information on outbreaks of larvae of the noctuid moth Eurois occulta in Greenland. Based on an extensive dataset from a monitoring programme in Kobbefjord, West Greenland, we demonstrate effects of a larval outbreak in 2011 on vegetation productivity and CO(2) exchange. We estimate a decreased carbon (C) sink strength in the order of 118–143 g C m(−2), corresponding to 1210–1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years by increased primary production, probably facilitated by the larval outbreak increasing nutrient turnover rates. Furthermore, we demonstrate for the first time in tundra ecosystems, the potential for using remote sensing to detect and map insect outbreak events. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13280-016-0863-9) contains supplementary material, which is available to authorized users

    Vegetation phenology gradients along the west and east coasts of Greenland from 2001 to 2015

    Get PDF
    The objective of this paper is to characterize the spatiotemporal variations of vegetation phenology along latitudinal and altitudinal gradients in Greenland, and to examine local and regional climatic drivers. Time-series from the Moderate Resolution Imaging Spectroradiometer (MODIS) were analyzed to obtain various phenological metrics for the period 2001–2015. MODIS-derived land surface temperatures were corrected for the sampling biases caused by cloud cover. Results indicate significant differences between West and East Greenland, in terms of both observed phenology during the study period, as well as the climatic response. The date of the start of season (SOS) was significantly earlier (24 days), length of season longer (25 days), and time-integrated NDVI higher in West Greenland. The sea ice concentration during May was found to have a significant effect on the date of the SOS only in West Greenland, with the strongest linkage detected in mid-western parts of Greenland

    Volatile organic compound fluxes in a subarctic peatland and lake

    Get PDF
    Ecosystems exchange climate-relevant trace gases with the atmosphere, including volatile organic compounds (VOCs) that are a small but highly reactive part of the carbon cycle. VOCs have important ecological functions and implications for atmospheric chemistry and climate.We measured the ecosystem-level surface-atmosphere VOC fluxes using the eddy covariance technique at a shallow subarctic lake and an adjacent graminoid-dominated fen in northern Sweden during two contrasting periods: the peak growing season (mid-July) and the senescent period post-growing season (September-October). In July, the fen was a net source of methanol, acetaldehyde, acetone, dimethyl sulfide, isoprene, and monoterpenes. All of these VOCs showed a diel cycle of emission with maxima around noon and isoprene dominated the fluxes (93±22 μmolm-2 d-1, mean±SE). Isoprene emission was strongly stimulated by temperature and presented a steeper response to temperature (Q10 = 14:5) than that typically assumed in biogenic emission models, supporting the high temperature sensitivity of arctic vegetation. In September, net emissions of methanol and isoprene were drastically reduced, while acetaldehyde and acetone were deposited to the fen, with rates of up to-6:7±2:8 μmolm-2 d-1 for acetaldehyde. Remarkably, the lake was a sink for acetaldehyde and acetone during both periods, with average fluxes up to -19±1:3 μmolm-2 d-1 of acetone in July and up to-8:5± 2:3 μmolm-2 d-1 of acetaldehyde in September. The deposition of both carbonyl compounds correlated with their atmospheric mixing ratios, with deposition velocities of-0:23± 0:01 and-0:68±0:03 cm s-1 for acetone and acetaldehyde, respectively. Even though these VOC fluxes represented less than 0.5%and less than 5%of the CO2 and CH4 net carbon ecosystem exchange, respectively, VOCs alter the oxidation capacity of the atmosphere. Thus, understanding the response of their emissions to climate change is important for accurate prediction of the future climatic conditions in this rapidly warming area of the planet.This research has been supported by the European Research Council (TUVOLU – Tundra biogenic volatile emissions in the 21st century, grant no. 771012) and the Marie Skłodowska-Curie actions (HIVOL, grant no. 751684) under the European Union's Horizon 2020 research and innovation programme, the Independent Research Fund Denmark | Natural Sciences, the Swedish Research Council (grant no. 2013-5562), the European Commission under the Seventh Framework Programme (PAGE21, grant no. 282700), and by the Danish National Research Foundation (CENPERM DNRF100).Peer reviewe

    Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km<sup>2 </sup>scale

    Get PDF
    Permafrost is a key element of the cryosphere and an essential climate variable in the Global Climate Observing System. There is no remote-sensing method available to reliably monitor the permafrost thermal state. To estimate permafrost distribution at a hemispheric scale, we employ an equilibrium state model for the temperature at the top of the permafrost (TTOP model) for the 2000–2016 period, driven by remotely-sensed land surface temperatures, down-scaled ERA-Interim climate reanalysis data, tundra wetness classes and landcover map from the ESA Landcover Climate Change Initiative (CCI) project. Subgrid variability of ground temperatures due to snow and landcover variability is represented in the model using subpixel statistics. The results are validated against borehole measurements and reviewed regionally. The accuracy of the modelled mean annual ground temperature (MAGT) at the top of the permafrost is ±2 °C when compared to permafrost borehole data. The modelled permafrost area (MAGT 0) is around 21 × 106 km2 (22% of exposed land area), which is approximately 2 × 106 km2 less than estimated previously. Detailed comparisons at a regional scale show that the model performs well in sparsely vegetated tundra regions and mountains, but is less accurate in densely vegetated boreal spruce and larch forests
    • …
    corecore