7 research outputs found

    Numerical investigation of multiple injection strategy on the development of high-pressure Diesel sprays

    No full text
    Computational fluid dynamics results are presented providing information on the influence of multiple injection strategy on fuel vaporization characteristics under conditions typical of direct injection, turbocharged, high-speed automotive diesel engines. The fuel is assumed to be injected from a high-pressure common rail injector nozzle. Focus is given on the number of multiple injections and dwell-time on the evaporating spray plume development. Comparison between the different cases is performed in terms of liquid and vapour penetration curves, the spatial distribution of the air–fuel equivalence ratio and the fuel vapour spatial distribution difference between the cases considered. The results confirm that, under the operating conditions investigated, the liquid penetration length, known to freeze at a distance from the nozzle exit, is not significantly affected by the injection strategy, while vapour penetration follows the time-shift of the dwell-time. Longer dwell-times retard the diffusion of the vapour in the carrier gas. Although injection of small fuel quantities prior to the main pulse does not affect the liquid penetration, it contributes up to 5 per cent more stoichiometric fuel vapour present in the area of observed auto-ignition sites. Post injection and splitting of the main injection in two pulses modify the vapour distribution by creating two spatially separated fuel-rich zones

    Experimental and numerical analysis of the single droplet impact onto stationary ones

    No full text
    The present paper investigates experimentally and numerically the impact of a spherical water droplet onto a stationary sessile one lying onto a substrate. The experiments were performed with two different film thicknesses, three different We numbers and two surface contact angles (two substrates, aluminium and glass). For this purpose a CCD camera was used and the corresponding qualitative and quantitative characteristics regarding the time evolution of the phenomenon, such as the diameter and height of the evolving crown, were obtained by image analysis. The aforementioned investigation was extended applying also the V.O.F (Volume Of Fluid) numerical methodology for the prediction of the temporal evolution of the phenomenon, so as to identify important characteristics of the induced flow field, not easy to be measured. This permits the in depth understanding of the governing flow laws, which resemble to those in the case of a droplet impact onto shallow films. The governing Navier-Stokes equations are solved both for the gas and liquid phase coupled with an additional equation for the transport of the liquid interface. An unstructured numerical grid is used along with an adaptive local grid refinement technique, increasing the numerical accuracy along the liquid-gas interface with the minimum computational cost. The numerical model is validated against the corresponding experimental data showing a good agreement. The regimes of deposition and splashing are identified as a function of We number and of the maximum thickness of the steady film, which is affected by the surface wettability properties. Moreover, following an analysis of the controlling parameters describing the temporal evolution of the lamella spreading, the role of We and Oh numbers as also of the wetting contact angle were identified, providing analytical expressions for the main dimensions characterizing the phenomenon

    Effect of dwell-time on multi-component fuel vaporisation of high-pressure Diesel sprays injected from cylindrical and reverse tapered multi-hole nozzles

    No full text
    The effect of dwell-time, fuel composition and nozzle hole shape on the development of dense Diesel sprays injected from high-pressure multi-hole common rail injector nozzles is evaluated using a validated computational fluid dynamics spray model. The initial conditions required as input to the model have been estimated by a multiphase nozzle hole cavitation model. The subsequent liquid plume development is predicted using an Eulerian- Lagrangian spray model, which accounts for liquid-core atomisation, droplet aerodynamic break-up, turbulent dispersion, droplet-to-droplet interaction and multi-component fuel vaporisation. The physical properties of the liquid fuel follow those of specified composition of pure hydrocarbons; the effect of different composition on the spray development during pilot and main injection periods is assessed. In the absence of experimental data to characterise the detailed spray structure under such operating conditions, the computational results presented in this work aim to provide some useful information about the effect of multi-injection strategy on fuel vaporisation characteristics under conditions typical of direct injection, turbocharged, high-speed Diesel engines
    corecore