152 research outputs found

    Experimental Investigation of Droplet Injections in the Vicinity of the Critical Point: A comparison of different model approaches

    Full text link
    [EN] The disintegration process of liquid fuel within combustion chambers is one of the most important parameters for efficient and stable combustion. Especially for high pressures exceeding the critical value of the injected fluids the mixing processes are not fully understood yet. Recently, different theoretical macroscopic models have been introduced to understand breakdown of the classical two phase regime and predict the transition from evaporation to a diffuse-mixing process. In order to gain deeper insight into the physical processes of this transition, a parametric study of free-falling n-pentane droplets in an inert nitrogen atmosphere is presented. Atmospheric conditions varied systematically from sub- to supercritical values with respect to the fluid properties. An overlay of a diffuse lighted image with a shadowgram directly in the optical setup (front lighted shadowgraphy) was applied to simultaneously detect the presence of a material surface of the droplet as well as changes in density gradients in the surrounding atmosphere. The experimental investigation illustrates, that the presence of a material surface cannot be shown by a direct shadowgram. However, reflections and refractions caused by diffuse ambient illumination are able to indicate the presence of a material surface. In case of the supercritical droplet injections in this study, front lighted shadowgraphy clearly revealed the presence of a material surface, even when the pre-heated droplets are released into a supercritical atmosphere. This detection of the droplet interface indicates, that the droplet remains subcritical in the region of interest, even though it is injected into a supercritical atmosphere. Based on the adiabatic mixing assumption recent Raman-scattering results in the wake of the droplet are re-evaluated to compute the temperature distribution. Presented experimental findings as well as the re-evaluation of recent Raman scattering results are compared to thermodynamic models to predict the onset of diffuse-mixing and supercritical disintegration of the droplet. Additionally, a one dimensional evaporation model is used to evaluate the validity of the adiabatic mixing assumption in the estimation of the droplet temperature. The presented findings contribute to the understanding of recent theoretical models for prediction of spray and droplet disintegration and the onset of diffuse-mixing processes.The authors gratefully acknowledge the German Research Foundation (DFG) for the financial support through the collaborative research centre SFB/Transregio 75.Steinhausen, C.; Lamanna, G.; Weigand, B.; Stierle, R.; Groß, J.; Preusche, A.; Dreizler, A. (2017). Experimental Investigation of Droplet Injections in the Vicinity of the Critical Point: A comparison of different model approaches. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 830-837. https://doi.org/10.4995/ILASS2017.2017.4635OCS83083

    DESY NanoLab

    Get PDF
    The DESY NanoLab is a facility providing access to nano-characterization, nano-structuring and nano-synthesis techniques which are complementary to the advanced X-ray techniques available at DESY’s light sources. It comprises state-of-the art scanning probe microscopy and focused ion beam manufacturing, as well as surface sensitive spectroscopy techniques for chemical analysis. Specialized laboratory x-ray diffraction setups are available for a successful sample pre-characterization before the precious synchrotron beamtimes. Future upgrades will include as well characterization of magnetic properties

    Gas-induced segregation in Pt-Rh alloy nanoparticles observed by in-situ Bragg coherent diffraction imaging

    Full text link
    Bimetallic catalysts can undergo segregation or redistribution of the metals driven by oxidizing and reducing environments. Bragg coherent diffraction imaging (BCDI) was used to relate displacement fields to compositional distributions in crystalline Pt-Rh alloy nanoparticles. 3D images of internal composition showed that the radial distribution of compositions reverses partially between the surface shell and the core when gas flow changes between O2 and H2. Our observation suggests that the elemental segregation of nanoparticle catalysts should be highly active during heterogeneous catalysis and can be a controlling factor in synthesis of electrocatalysts. In addition, our study exemplifies applications of BCDI for in situ 3D imaging of internal equilibrium compositions in other bimetallic alloy nanoparticles

    A New Synthesis Approach for Carbon Nitrides: Poly(triazine imide) and Its Photocatalytic Properties

    Get PDF
    Poly (triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-C3N4, especially in photocatalysis. As most of the carbon nitrides PTI is usually synthesized by thermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH dependent solubility in aqueous solutions. This synthesis is based on the formation of radicals during electrolysis of an aqueous melamine solution, coupling of resulting melamine radicals and the final formation of PTI. We applied different characterization techniques to identify PTI as the product of this reaction and report the first liquid state NMR experiments on a triazine-based carbon nitride. We show that PTI has a relatively high specific surface area and a pH dependent adsorption of charged molecules. This tunable adsorption has a significant influence on the photocatalytic properties of PTI which we investigated in dye degradation experiments

    Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal

    Get PDF
    In the realm of colloidal nanostructures, with its immense capacity for shape and dimensionality control, the form is undoubtedly a driving factor for the tunability of optical and electrical properties in semiconducting or metallic materials. However, influencing the fundamental properties is still challenging and requires sophisticated surface or dimensionality manipulation. In this work, we present such a modification for the example of colloidal lead sulphide nanowires. We show that the electrical properties of lead sulphide nanostructures can be altered from semiconducting to metallic with indications of superconductivity, by exploiting the flexibility of the colloidal synthesis to sculpt the crystal and to form different surface facets. A particular morphology of lead sulphide nanowires has been synthesized through the formation of {111} surface facets, which shows metallic and superconducting properties in contrast to other forms of this semiconducting crystal, which contain other surface facets ({100} and {110}). This effect, which has been investigated with several experimental and theoretical approaches, is attributed to the presence of lead rich {111} facets. The insights promote new strategies for tuning the properties of crystals as well as new applications for lead sulphide nanostructures.Comment: 23 pages, 6 figure

    Role of hydroxylation for the atomic structure of a non-polar vicinal zinc oxide

    Get PDF
    From the catalytic, semiconducting, and optical properties of zinc oxide (ZnO) numerous potential applications emerge. For the physical and chemical properties of the surface, under-coordinated atoms often play an important role, necessitating systematic studies of their influence. Here we study the vicinal ZnO(10 1 \uaf 4) surface, rich in under-coordinated sites, using a combination of several experimental techniques and density functional theory calculations. We determine the atomic-scale structure and find the surface to be a stable, long-range ordered, non-polar facet of ZnO, with a high step-density and uniform termination. Contrary to an earlier suggested nano-faceting model, a bulk termination fits much better to our experimental observations. The surface is further stabilized by dissociatively adsorbed H2O on adjacent under-coordinated O- and Zn-atoms. The stabilized surface remains highly active for water dissociation through the remaining under-coordinated Zn-sites. Such a vicinal oxide surface is a prerequisite for future adsorption studies with atomically controlled local step and terrace geometry

    High‐Performance n‐ and p‐Type Field‐Effect Transistors Based on Hybridly Surface‐Passivated Colloidal PbS Nanosheets

    Get PDF
    Colloidally synthesized nanomaterials are among the promising candidates for future electronic devices due to their simplicity and the inexpensiveness of their production. Specifically, colloidal nanosheets are of great interest since they are conveniently producible through the colloidal approach while having the advantages of two-dimensionality. In order to employ these materials, according transistor behavior should be adjustable and of high performance. We show that the transistor performance of colloidal lead sulfide nanosheets is tunable by altering the surface passivation, the contact metal, or by exposing them to air. We found that adding halide ions to the synthesis leads to an improvement of the conductivity, the field-effect mobility, and the on/off ratio of these transistors by passivating their surface defects. Superior n-type behavior with a field-effect mobility of 248 cm^2V^-1s^-1 and an on/off ratio of 4×10^6 is achieved. The conductivity of these stripes can be changed from n-type to p-type by altering the contact metal and by adding oxygen to the working environment. As a possible solution for the post-Moore era, realizing new high quality semiconductors such as colloidal materials is crucial. In this respect, our results can provide new insights which helps to accelerate their optimization for potential applications

    Morphological evolution of the fivefold surface of i-AlPdMn quasicrystals

    Get PDF
    Morphology of the fivefold symmetric quasicrystal surface of AlPdMn was investigated by x-ray reflectivity and by x-ray diffraction. X-ray experiments revealed two different morphologies depending on the surface preparation. Sputtering and annealing up to 900 K, under UHV conditions, produced a rough and facetted quasicrystal surface. These features were confirmed by atomic force microscopy and scanning tunnel microscopy measurements. We also observed that an annealing above 900 K induces a rapid and irreversible transition toward a flat surface

    Single Alloy Nanoparticle X-Ray Imaging during a Catalytic Reaction

    Get PDF
    The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts dynamics. We report the facet resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment dependent chemical composition. We find that the initially Pt terminated nanoparticle surface gets Rh enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent and the Rh enrichment is non-reversible under subsequent CO reduction. Tracking facet resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity and lifetime.Comment: 15 pages, 4 figures, 32 reference
    corecore