64 research outputs found

    Rationale for Prolonged Glucocorticoid Use in Pediatric ARDS: What the Adults Can Teach Us.

    Get PDF
    Based on molecular mechanisms and physiologic data, a strong association has been established between dysregulated systemic inflammation and progression of acute respiratory distress syndrome (ARDS). In ARDS patients, glucocorticoid receptor-mediated downregulation of systemic inflammation is essential to restore homeostasis, decrease morbidity and improve survival and can be significantly enhanced with prolonged low-to-moderate dose glucocorticoid treatment. A large body of evidence supports a strong association between prolonged glucocorticoid treatment-induced downregulation of the inflammatory response and improvement in pulmonary and extrapulmonary physiology. The balance of the available data from eight controlled trials (n = 622) provides consistent strong level of evidence for improving patient-centered outcomes and hospital survival. The sizable increase in mechanical ventilation-free days (weighted mean difference, 6.48 days; CI 95% 2.57-10.38, p < 0.0001) and intensive care unit-free days (weighted mean difference, 7.7 days; 95% CI, 3.13-12.20, p < 0.0001) by day 28 is superior to any investigated intervention in ARDS. For treatment initiated before day 14 of ARDS, the increased in hospital survival (70 vs. 52%, OR 2.41, CI 95% 1.50-3.87, p = 0.0003) translates into a number needed to treat to save one life of 5.5. Importantly, prolonged glucocorticoid treatment is not associated with increased risk for nosocomial infections (22 vs. 27%, OR 0.61, CI 95% 0.35-1.04, p = 0.07). Treatment decisions involve a tradeoff between benefits and risks, as well as costs. This low-cost, highly effective therapy is familiar to every physician and has a low risk profile when secondary prevention measures are implemented

    Prolonged Glucocorticoid Treatment in ARDS: Impact on Intensive Care Unit-Acquired Weakness.

    Get PDF
    Systemic inflammation and duration of immobilization are strong independent risk factors for the development of intensive care unit-acquired weakness (ICUAW). Activation of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB) results in muscle wasting during disuse-induced skeletal muscle atrophy (ICU bed rest) and septic shock. In addition, NF-κB-mediated signaling plays a significant role in mechanical ventilation-induced diaphragmatic atrophy and contractile dysfunction. Older trials investigating high dose glucocorticoid treatment reported a lack of a sustained anti-inflammatory effects and an association with ICUAW. However, prolonged low-to-moderate dose glucocorticoid treatment of sepsis and ARDS is associated with a reduction in NF-κB DNA-binding, decreased transcription of inflammatory cytokines, enhanced resolution of systemic and pulmonary inflammation, leading to fewer days of mechanical ventilation, and lower mortality. Importantly, meta-analyses of a large number of randomized controlled trials investigating low-to-moderate glucocorticoid treatment in severe sepsis and ARDS found no increase in ICUAW. Furthermore, while the ARDS network trial investigating methylprednisolone treatment in persistent ARDS is frequently cited to support an association with ICUAW, a reanalysis of the data showed a similar incidence with the control group. Our review concludes that in patients with sepsis and ARDS, any potential direct harmful neuromuscular effect of glucocorticoids appears outweighed by the overall clinical improvement and reduced duration of organ failure, in particular ventilator dependency and associated immobilization, which are key risk factors for ICUAW

    Plasma biomarker analysis in pediatric ARDS: Generating future framework from a pilot randomized control trial of methylprednisolone: A framework for identifying plasma biomarkers related to clinical outcomes in pediatric ARDS

    Get PDF
    © 2016 Kimura, Saravia, Rovnaghi, Meduri, Schwingshackl, Cormier and Anand. Objective: Lung injury activates multiple pro-inflammatory pathways, including neutrophils, epithelial, and endothelial injury, and coagulation factors leading to acute respiratory distress syndrome (ARDS). Low-dose methylprednisolone therapy (MPT) improved oxygenation and ventilation in early pediatric ARDS without altering duration of mechanical ventilation or mortality. We evaluated the effects of MPT on biomarkers of endothelial [Ang-2 and soluble intercellular adhesion molecule-1 (sICAM-1)] or epithelial [soluble receptor for activated glycation end products (sRAGE)] injury, neutrophil activation [matrix metalloproteinase-8 (MMP-8)], and coagulation (plasminogen activator inhibitor-1). Design: Double-blind, placebo-controlled randomized trial. Setting: Tertiary-care pediatric intensive care unit (ICU). Patients: Mechanically ventilated children (0-18 years) with early ARDS. Interventions: Blood samples were collected on days 0 (before MPT), 7, and 14 during low-dose MPT (n = 17) vs. placebo (n = 18) therapy. The MPT group received a 2-mg/kg loading dose followed by 1 mg/kg/day continuous infusions from days 1 to 7, tapered off over 7 days; placebo group received equivalent amounts of 0.9% saline. We analyzed plasma samples using a multiplex assay for five biomarkers of ARDS. Multiple regression models were constructed to predict associations between changes in biomarkers and the clinical outcomes reported earlier, including P/F ratio on days 8 and 9, plateau pressure on days 1 and 2, PaCO 2 on days 2 and 3, racemic epinephrine following extubation, and supplemental oxygen at ICU discharge. Results: No differences occurred in biomarker concentrations between the groups on day 0. On day 7, reduction in MMP-8 levels (p = 0.0016) occurred in the MPT group, whereas increases in sICAM-1 levels (p = 0.0005) occurred in the placebo group (no increases in sICAM-1 in the MPT group). sRAGE levels decreased in both MPT and placebo groups (p \u3c 0.0001) from day 0 to day 7. On day 7, sRAGE levels were positively correlated with MPT group PaO 2 /FiO 2 ratios on day 8 (r = 0.93, p = 0.024). O 2 requirements at ICU transfer positively correlated with day 7 MMP-8 (r = 0.85, p = 0.016) and Ang-2 levels (r = 0.79, p = 0.036) in the placebo group and inversely correlated with day 7 sICAM-1 levels (r = -0.91, p = 0.005) in the MPT group. Conclusion: Biomarkers selected from endothelial, epithelial, or intravascular factors can be correlated with clinical endpoints in pediatric ARDS. For example, MPT could reduce neutrophil activation ([downwards double arrow]MMP-8), decrease endothelial injury (⇔sICAM-1), and allow epithelial recovery ([downwards double arrow]sRAGE). Large ARDS clinical trials should develop similar frameworks

    K\u3csub\u3e2P\u3c/sub\u3e2.1 (TREK-1) Potassium Channel Activation Protects against Hyperoxia-Induced Lung Injury

    Get PDF
    No targeted therapies exist to counteract Hyperoxia (HO)-induced Acute Lung Injury (HALI). We previously found that HO downregulates alveolar K2P2.1 (TREK-1) K+ channels, which results in worsening lung injury. This decrease in TREK-1 levels leaves a subset of channels amendable to pharmacological intervention. Therefore, we hypothesized that TREK-1 activation protects against HALI. We treated HO-exposed mice and primary alveolar epithelial cells (AECs) with the novel TREK-1 activators ML335 and BL1249, and quantified physiological, histological, and biochemical lung injury markers. We determined the effects of these drugs on epithelial TREK-1 currents, plasma membrane potential (Em), and intracellular Ca2+ (iCa) concentrations using fluorometric assays, and blocked voltage-gated Ca2+ channels (CaV) as a downstream mechanism of cytokine secretion. Once-daily, intra-tracheal injections of HO-exposed mice with ML335 or BL1249 improved lung compliance, histological lung injury scores, broncho-alveolar lavage protein levels and cell counts, and IL-6 and IP-10 concentrations. TREK-1 activation also decreased IL-6, IP-10, and CCL-2 secretion from primary AECs. Mechanistically, ML335 and BL1249 induced TREK-1 currents in AECs, counteracted HO-induced cell depolarization, and lowered iCa2+ concentrations. In addition, CCL-2 secretion was decreased after L-type CaV inhibition. Therefore, Em stabilization with TREK-1 activators may represent a novel approach to counteract HALI

    Apoptosis signal-regulating kinase-1 promotes inflammasome priming in macrophages

    Get PDF
    © 2019 the American Physiological Society. previously showed that mice deficient in apo-ptosis signal-regulating kinase-1 (ASK1) were partially protected against ventilator-induced lung injury. Because ASK1 can promote both cell death and inflammation, we hypothesized that ASK1 activation regulates inflammasome-mediated inflammation. Mice deficient in ASK1 expression (ASK1 +/+ ) exhibited significantly less inflammation and lung injury (as measured by neutrophil infiltration, IL-6, and IL-1β) in response to treatment with inhaled lipopolysaccharide (LPS) compared with wild-type (WT) mice. To determine whether this proinflammatory response was mediated by ASK1, we investigated inflammasome-mediated responses to LPS in primary macrophages and bone marrow-derived macrophages (BMDMs) from WT and ASK1 +/+ mice, as well as the mouse alveolar macrophage cell line MH-S. Cells were treated with LPS alone for priming or LPS followed by ATP for activation. When macrophages were stimulated with LPS followed by ATP to activate the inflammasome, we found a significant increase in secreted IL-1β from WT cells compared with ASK1-deficient cells. LPS priming stimulated an increase in NOD-like receptor 3 (NLRP3) and pro-IL-1β in WT BMDMs, but expression of NLRP3 was significantly decreased in ASK1 +/+ BMDMs. Subsequent ATP treatment stimulated an increase in cleaved caspase-1 and IL-1β in WT BMDMs compared with ASK1 +/+ BMDMs. Similarly, treatment of MH-S cells with LPS + ATP caused an increase in both cleaved caspase-1 and IL-1β that was diminished by the ASK-1 inhibitor NQDI1. These results demonstrate, for the first time, that ASK1 promotes inflammasome priming

    Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury

    Get PDF
    Copyright © 2014 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins. Objectives: We previously reported the expression of the twoporedomain K+ channel TREK-1 in lung epithelial cells and proposed a role for this channel in the regulation of alveolar epithelial cytokine secretion. In this study, we focused on investigating the role of TREK-1 in vivo in the development of hyperoxia-induced lung injury. Design: Laboratory animal experiments. Setting: University research laboratory. Subjects: Wild-type and TREK-1-deficient mice. Interventions: Mice were anesthetized and exposed to 1) room air, no mechanical ventilation, 2) 95% hyperoxia for 24 hours, and 3) 95% hyperoxia for 24 hours followed by mechanical ventilation for 4 hours. Measurements and Main Results: Hyperoxia exposure accentuated lung injury in TREK-1-deficient mice but not controls, resulting in increase in lung injury scores, bronchoalveolar lavage fluid cell numbers, and cellular apoptosis and a decrease in quasi-static lung compliance. Exposure to a combination of hyperoxia and injurious mechanical ventilation resulted in further morphological lung damage and increased lung injury scores and bronchoalveolar lavage fluid cell numbers in control but not TREK-1-deficient mice. At baseline and after hyperoxia exposure, bronchoalveolar lavage cytokine levels were unchanged in TREK-1-deficient mice compared with controls. Exposure to hyperoxia and mechanical ventilation resulted in an increase in bronchoalveolar lavage interleukin-6, monocyte chemotactic protein-1, and tumor necrosis factor-á levels in both mouse types, but the increase in interleukin-6 and monocyte chemotactic protein-1 levels was less prominent in TREK-1-deficient mice than in controls. Lung tissue macrophage inflammatory protein-2, keratinocytederived cytokine, and interleukin-1β gene expression was not altered by hyperoxia in TREK-1-deficient mice compared with controls. Furthermore, we show for the first time TREK-1 expression on alveolar macrophages and unimpaired tumor necrosis factor-á secretion from TREK-1-deficient macrophages. Conclusions: TREK-1 deficiency resulted in increased sensitivity of lungs to hyperoxia, but this effect is less prominent if overwhelming injury is induced by the combination of hyperoxia and injurious mechanical ventilation. TREK-1 may constitute a new potential target for the development of novel treatment strategies against hyperoxiainduced lung injury

    Editorial: Work-Life Balance: Essential or Ephemeral?

    No full text
    • …
    corecore