2 research outputs found

    Chemoselective Dual Labeling of Native and Recombinant Proteins

    No full text
    The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups. In order to ensure broader applicability of the functionalization strategy, a novel, short peptide sequence that introduces a disulfide bridge was designed and site-selective dual labeling in the presence of biogenic groups was successfully demonstrated

    Synthesis of Peptide-Functionalized Poly(bis-sulfone) Copolymers Regulating HIV‑1 Entry and Cancer Stem Cell Migration

    No full text
    Peptide–polymer conjugates have been regarded as primary stronghold in biohybrid nanomedicine, which has seen extensive development due to its intrinsic property to provide complementary functions of both the peptide material and the synthetic polymer platform. Here we present an advanced macromolecular therapeutic that targets two exclusive classes of important diseases (namely, the HIV and cancer) that are implicated by extremely different causative agents. Using a facile thiol-reactive monomer, the eventual polymer facilitates multivalent conjugation of an endogenous peptide WSC02 that targets the CXCR4 chemokine receptor. The biohybrid material demonstrated both potent antiviral effects against HIV-1 as well as inhibiting cancer stem cell migration thus establishing the foundation for multimodal nanotherapeutics that simultaneously target more than one class of disease implications
    corecore