71 research outputs found

    A Bayesian Joint Model for Compositional Mediation Effect Selection in Microbiome Data

    Full text link
    Analyzing multivariate count data generated by high-throughput sequencing technology in microbiome research studies is challenging due to the high-dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, marginal indirect effects, overall indirect effects, as well potential confounders, while simultaneously quantifying their uncertainty. We propose a formulation of a Bayesian joint model for compositional data that allows for the identification, estimation, and uncertainty quantification of various causal estimands in high-dimensional mediation analysis. We conduct simulation studies and compare our method's mediation effects selection performance with existing methods. Finally, we apply our method to a benchmark data set investigating the sub-therapeutic antibiotic treatment effect on body weight in early-life mice

    Ischemic Heart Disease Incidence in Relation to Fine versus Total Particulate Matter Exposure in a U.S. Aluminum Industry Cohort.

    Get PDF
    Ischemic heart disease (IHD) has been linked to exposures to airborne particles with an aerodynamic diameter <2.5 μm (PM2.5) in the ambient environment and in occupational settings. Routine industrial exposure monitoring, however, has traditionally focused on total particulate matter (TPM). To assess potential benefits of PM2.5 monitoring, we compared the exposure-response relationships between both PM2.5 and TPM and incidence of IHD in a cohort of active aluminum industry workers. To account for the presence of time varying confounding by health status we applied marginal structural Cox models in a cohort followed with medical claims data for IHD incidence from 1998 to 2012. Analyses were stratified by work process into smelters (n = 6,579) and fabrication (n = 7,432). Binary exposure was defined by the 10th-percentile cut-off from the respective TPM and PM2.5 exposure distributions for each work process. Hazard Ratios (HR) comparing always exposed above the exposure cut-off to always exposed below the cut-off were higher for PM2.5, with HRs of 1.70 (95% confidence interval (CI): 1.11-2.60) and 1.48 (95% CI: 1.02-2.13) in smelters and fabrication, respectively. For TPM, the HRs were 1.25 (95% CI: 0.89-1.77) and 1.25 (95% CI: 0.88-1.77) for smelters and fabrication respectively. Although TPM and PM2.5 were highly correlated in this work environment, results indicate that, consistent with biologic plausibility, PM2.5 is a stronger predictor of IHD risk than TPM. Cardiovascular risk management in the aluminum industry, and other similar work environments, could be better guided by exposure surveillance programs monitoring PM2.5

    Incident Ischemic Heart Disease After Long-Term Occupational Exposure to Fine Particulate Matter: Accounting for 2 Forms of Survivor Bias.

    Get PDF
    Little is known about the heart disease risks associated with occupational, rather than traffic-related, exposure to particulate matter with aerodynamic diameter of 2.5 µm or less (PM2.5). We examined long-term exposure to PM2.5 in cohorts of aluminum smelters and fabrication workers in the United States who were followed for incident ischemic heart disease from 1998 to 2012, and we addressed 2 forms of survivor bias. Left truncation bias was addressed by restricting analyses to the subcohort hired after the start of follow up. Healthy worker survivor bias, which is characterized by time-varying confounding that is affected by prior exposure, was documented only in the smelters and required the use of marginal structural Cox models. When comparing always-exposed participants above the 10th percentile of annual exposure with those below, the hazard ratios were 1.67 (95% confidence interval (CI): 1.11, 2.52) and 3.95 (95% CI: 0.87, 18.00) in the full and restricted subcohorts of smelter workers, respectively. In the fabrication stratum, hazard ratios based on conditional Cox models were 0.98 (95% CI: 0.94, 1.02) and 1.17 (95% CI: 1.00, 1.37) per 1 mg/m(3)-year in the full and restricted subcohorts, respectively. Long-term exposure to occupational PM2.5 was associated with a higher risk of ischemic heart disease among aluminum manufacturing workers, particularly in smelters, after adjustment for survivor bias

    Selective activation of TNFR1 and NF-κB inhibition by a novel biyouyanagin analogue promotes apoptosis in acute leukemia cells

    Get PDF
    Background: Acquired resistance towards apoptosis is a hallmark of cancer. Elimination of cells bearing activated oncogenes or stimulation of tumor suppressor mediators may provide a selection pressure to overcome resistance. KC-53 is a novel biyouyanagin analogue known to elicit strong anti-inflammatory and anti-viral activity. The current study was designed to evaluate the anticancer efficacy and molecular mechanisms of KC-53 against human cancer cells. Methods: Using the MTT assay we examined initially how KC-53 affects the proliferation rates of thirteen representative human cancer cell lines in comparison to normal peripheral blood mononuclear cells (PBMCs) and immortalized cell lines. To decipher the key molecular events underlying its mode of action we selected the human promyelocytic leukemia HL-60 and the acute lymphocytic leukemia CCRF/CEM cell lines that were found to be the most sensitive to the antiproliferative effects of KC-53. Results: KC-53 promoted rapidly and irreversibly apoptosis in both leukemia cell lines at relatively low concentrations. Apoptosis was characterized by an increase in membrane-associated TNFR1, activation of Caspase-8 and proteolytic inactivation of the death domain kinase RIP1 indicating that KC-53 induced mainly the extrinsic/death receptor apoptotic pathway. Regardless, induction of the intrinsic/mitochondrial pathway was also achieved by Caspase-8 processing of Bid, activation of Caspase-9 and increased translocation of AIF to the nucleus. FADD protein knockdown restored HL-60 and CCRF/CEM cell viability and completely blocked KC-53-induced apoptosis. Furthermore, KC-53 administration dramatically inhibited TNFα-induced serine phosphorylation on TRAF2 and on IκBα hindering therefore p65/NF-κΒ translocation to nucleus. Reduced transcriptional expression of pro-inflammatory and pro-survival p65 target genes, confirmed that the agent functionally inhibited the transcriptional activity of p65. Conclusions: Our findings demonstrate, for the first time, the selective anticancer properties of KC-53 towards leukemic cell lines and provide a detailed understanding of the molecular events underlying its dual anti-proliferative and pro-apoptotic properties. These results provide new insights into the development of innovative and targeted therapies for the treatment of some forms of leukemia

    Targeting IL13Ralpha2 activates STAT6-TP63 pathway to suppress breast cancer lung metastasis

    Get PDF
    Introduction Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. Methods An unbiased approach using gene expression profiling of a BLBC progression model and in silicoleveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Results We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. Conclusion Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease

    Retro American

    Get PDF
    Diesel exhaust is a suggested risk factor for ischemic heart disease (IHD), but evidence from cohorts using quantitative exposure metrics is limited. We examined the impact of respirable elemental carbon (REC), a key surrogate for diesel exhaust, and respirable dust (RD) on IHD mortality, using data from the Diesel Exhaust in Miners Study in the United States. Using data from a cohort of male workers followed from 1948–1968 until 1997, we fitted Cox proportional hazards models to estimate hazard ratios for IHD mortality for cumulative and average intensity of exposure to REC and RD. Segmented linear regression models allowed for nonmonotonicity. Hazard ratios for cumulative and average REC exposure declined relative to the lowest exposure category before increasing to 0.79 and 1.25, respectively, in the highest category. Relative to the category containing the segmented regression change points, hazard ratios for the highest category were 1.69 and 1.54 for cumulative and average REC exposure, respectively. Hazard ratios for RD exposure increased across the full exposure range to 1.33 and 2.69 for cumulative and average RD exposure, respectively. Tests for trend were statistically significant for cumulative REC exposure (above the change point) and for average RD exposure. Our findings suggest excess risk of IHD mortality in relation to increased exposure to REC and RD. © 2018 Oxford University Press. All Rights Reserved

    EEG recordings as biomarkers of pain perception: where do we stand and where to go?

    Get PDF
    Introduction: The universality and complexity of pain, which is highly prevalent, yield its significance to both patients and researchers. Developing a non-invasive tool that can objectively measure pain is of the utmost importance for clinical and research purposes. Traditionally electroencephalography (EEG) has been mostly used in epilepsy; however, over the recent years EEG has become an important non-invasive clinical tool that has helped increase our understanding of brain network complexities and for the identification of areas of dysfunction. This review aimed to investigate the role of EEG recordings as potential biomarkers of pain perception. Methods: A systematic search of the PubMed database led to the identification of 938 papers, of which 919 were excluded as a result of not meeting the eligibility criteria, and one article was identified through screening of the reference lists of the 19 eligible studies. Ultimately, 20 papers were included in this systematic review. Results: Changes of the cortical activation have potential, though the described changes are not always consistent. The most consistent finding is the increase in the delta and gamma power activity. Only a limited number of studies have looked into brain networks encoding pain perception. Conclusion: Although no robust EEG biomarkers of pain perception have been identified yet, EEG has potential and future research should be attempted. Designing strong research protocols, controlling for potential risk of biases, as well as investigating brain networks rather than isolated cortical changes will be crucial in this attempt
    • …
    corecore