10 research outputs found
Arbitrarily large steady-state bosonic squeezing via dissipation
We discuss how large amounts of steady-state quantum squeezing (beyond 3 dB)
of a mechanical resonator can be obtained by driving an optomechanical cavity
with two control lasers with differing amplitudes. The scheme does not rely on
any explicit measurement or feedback, nor does it simply involve a modulation
of an optical spring constant. Instead, it uses a dissipative mechanism with
the driven cavity acting as an engineered reservoir. It can equivalently be
viewed as a coherent feedback process, obtained by minimally perturbing the
quantum nondemolition measurement of a single mechanical quadrature. This shows
that in general the concepts of coherent feedback schemes and reservoir
engineering are closely related. We analyze how to optimize the scheme, how the
squeezing scales with system parameters, and how it may be directly detected
from the cavity output. Our scheme is extremely general, and could also be
implemented with, e.g., superconducting circuits.Comment: 5 pages, 3 figures ; 6 pages supplemental informatio
Noise-Induced Transitions in Optomechanical Synchronization
We study how quantum and thermal noise affects synchronization of two
optomechanical limit-cycle oscillators. Classically, in the absence of noise,
optomechanical systems tend to synchronize either in-phase or anti-phase.
Taking into account the fundamental quantum noise, we find a regime where
fluctuations drive transitions between these classical synchronization states.
We investigate how this "mixed" synchronization regime emerges from the
noiseless system by studying the classical-to-quantum crossover and we show how
the time scales of the transitions vary with the effective noise strength. In
addition, we compare the effects of thermal noise to the effects of quantum
noise
Dissipative optomechanical squeezing of light
We discuss a simple yet surprisingly effective mechanism which allows the
generation of squeezed output light from an optomechanical cavity. In contrast
to the well known mechanism of "ponderomotive squeezing", our scheme generates
squeezed output light by explicitly using the dissipative nature of the
mechanical resonator. We show that our scheme has many advantages over
ponderomotive squeezing; in particular, it is far more effective in the good
cavity limit commonly used in experiments. Furthermore, the squeezing generated
in our approach can be directly used to enhance the intrinsic measurement
sensitivity of the optomechanical cavity; one does not have to feed the
squeezed light into a separate measurement device. As our scheme is very
general, it could also e.g. be implemented using superconducting circuits
Optomechanically Induced Transparency in the Nonlinear Quantum Regime
Optomechanical systems have been shown both theoretically and experimentally
to exhibit an analogon to atomic electromagnetically induced transparency, with
sharp transmission features that are controlled by a second laser beam. Here we
investigate these effects in the regime where the fundamental nonlinear nature
of the optomechanical interaction becomes important. We demonstrate that pulsed
transistor-like switching of transmission still works even in this regime. We
also show that optomechanically induced transparency at the second mechanical
sideband could be a sensitive tool to see first indications of the nonlinear
quantum nature of the optomechanical interaction even for single-photon
coupling strengths significantly smaller than the cavity linewidth.Comment: 5 pages, 4 figure
Full photon statistics of a light beam transmitted through an optomechanical system
In this paper, we study the full statistics of photons transmitted through an
optical cavity coupled to nanomechanical motion. We analyze the entire temporal
evolution of the photon correlations, the Fano factor, and the effects of
strong laser driving, all of which show pronounced features connected to the
mechanical backaction. In the regime of single-photon strong coupling, this
allows us to predict a transition from sub-Poissonian to super-Poissonian
statistics for larger observation time intervals. Furthermore, we predict
cascades of transmitted photons triggered by multi-photon transitions. In this
regime, we observe Fano factors that are drastically enhanced due to the
mechanical motion.Comment: 8 pages, 7 figure
Nichtlineare Quanteneffekte und gequetschte ZustÀnde in der kavitÀtsbasierten Optomechanik
In this thesis we investigate nonlinear quantum effects and squeezing in cavity optomechanical systems, where light interacts with mechanical motion.
In the first part of this thesis we analyze how to generate squeezed mechanical states and squeezed output light with state-of-the-art optomechanical setups via dissipation. We predict that arbitrary large steady-state bosonic squeezing can be generated. Furthermore, we show that our dissipative output light squeezing scheme can be used directly to enhance the intrinsic measurement sensitivity of an optomechanical cavity.
In the second part, we explore the so-called âsingle-photon strong coupling regimeâ of optomechanics. In this regime, the nonlinear quantum nature of the optomechanical interaction becomes important. We work out the first signatures of this nonlinear quantum interaction. We also propose how to observe these signatures with near-future optomechanical experiments. In the following, we analyze how an even stronger quantum interaction between photons and phonons modifies the statistics of photons which are transmitted through an optomechanical system.
In the last part of this thesis, we discuss how to verify energy quantization of a mechanical degree of freedom. We propose to make use of an optomechanical setup where the position squared of a mechanical degree of freedom is coupled to the light field. We predict that energy quantization could be observable e.g. with nanometer-sized dielectric spheres.In dieser Arbeit werden nichtlineare Quanteneffekte und gequetschte ZustÀnde in der kavitÀtsbasierten Optomechanik studiert. In diesem Feld wird die Wechselwirkung zwischen Licht und mechanischer Bewegung analysiert.
Im ersten Teil der Arbeit wird untersucht, wie gequetschte mechanische ZustĂ€nde und gequetschtes Licht mit heute verfĂŒgbaren optomechanischen Experimenten generiert werden können. Dabei nutzt die vorgeschlagene Methode Dissipation explizit aus. Es wird vorhergesagt, dass beliebig stark gequetschte, stationĂ€re mechanische ZustĂ€nde erzeugt werden können. Des Weiteren wird gezeigt, dass die dissipative Methode zur Erzeugung von gequetschtem Licht, welches aus der KavitĂ€t austritt, direkt genutzt werden kann, um die intrinsische MesssensitivitĂ€t der optomechanischen KavitĂ€t zu erhöhen.
Im zweiten Teil der Arbeit wird das sogenannte âsingle-photon strong coupling regimeâ der Optomechanik betreten, in dem die nichtlineare Wechselwirkung zwischen Licht und Mechanik auf der Quanten-Ebene wichtig wird. ZunĂ€chst werden erste Anzeichen dieser nichtlinearen Quanten-Wechselwirkung herausgearbeitet und es wird vorgeschlagen, wie diese Anzeichen mit Experimenten beobachtet werden könnten, die in naher Zukunft entwickelt werden. AnschlieĂend wird analysiert, welchen Einfluss eine sehr starke Wechselwirkung zwischen einzelnen Photonen und Phononen auf die Statistik von Photonen hat, die durch das optomechanische System transmittiert wurden.
Im letzten Teil der Arbeit wird diskutiert, wie man die Quantisierung der Energie eines mechanischen Freiheitsgrades messen kann. Dabei wird die quadratische Position des mechanischen Freiheitsgrades an das Lichtfeld gekoppelt. Es wird vorhergesagt, dass Energiequantisierung mit dielektrischen KĂŒgelchen beobachtet werden könnte, die einen Durchmesser in der GröĂenordnung einiger Nanometer haben