144 research outputs found

    Modeling the structure and evolution of discussion cascades

    Get PDF
    We analyze the structure and evolution of discussion cascades in four popular websites: Slashdot, Barrapunto, Meneame and Wikipedia. Despite the big heterogeneities between these sites, a preferential attachment (PA) model with bias to the root can capture the temporal evolution of the observed trees and many of their statistical properties, namely, probability distributions of the branching factors (degrees), subtree sizes and certain correlations. The parameters of the model are learned efficiently using a novel maximum likelihood estimation scheme for PA and provide a figurative interpretation about the communication habits and the resulting discussion cascades on the four different websites.Comment: 10 pages, 11 figure

    Not all paths lead to Rome: Analysing the network of sister cities

    Full text link
    This work analyses the practice of sister city pairing. We investigate structural properties of the resulting city and country networks and present rankings of the most central nodes in these networks. We identify different country clusters and find that the practice of sister city pairing is not influenced by geographical proximity but results in highly assortative networks.Comment: 7 pages, 4 figure

    Large scale analysis of gender bias and sexism in song lyrics

    Full text link
    We employ Natural Language Processing techniques to analyse 377808 English song lyrics from the "Two Million Song Database" corpus, focusing on the expression of sexism across five decades (1960-2010) and the measurement of gender biases. Using a sexism classifier, we identify sexist lyrics at a larger scale than previous studies using small samples of manually annotated popular songs. Furthermore, we reveal gender biases by measuring associations in word embeddings learned on song lyrics. We find sexist content to increase across time, especially from male artists and for popular songs appearing in Billboard charts. Songs are also shown to contain different language biases depending on the gender of the performer, with male solo artist songs containing more and stronger biases. This is the first large scale analysis of this type, giving insights into language usage in such an influential part of popular culture

    Language, Twitter and Academic Conferences

    Full text link
    Using Twitter during academic conferences is a way of engaging and connecting an audience inherently multicultural by the nature of scientific collaboration. English is expected to be the lingua franca bridging the communication and integration between native speakers of different mother tongues. However, little research has been done to support this assumption. In this paper we analyzed how integrated language communities are by analyzing the scholars' tweets used in 26 Computer Science conferences over a time span of five years. We found that although English is the most popular language used to tweet during conferences, a significant proportion of people also tweet in other languages. In addition, people who tweet solely in English interact mostly within the same group (English monolinguals), while people who speak other languages tend to show a more diverse interaction with other lingua groups. Finally, we also found that the people who interact with other Twitter users show a more diverse language distribution, while people who do not interact mostly post tweets in a single language. These results suggest a relation between the number of languages a user speaks, which can affect the interaction dynamics of online communities.Comment: 4 pages, 3 figures, 4 tables, submitted to ACM Hypertext and Social Media 201

    Jointly they edit: examining the impact of community identification on political interaction in Wikipedia

    Get PDF
    In their 2005 study, Adamic and Glance coined the memorable phrase "divided they blog", referring to a trend of cyberbalkanization in the political blogosphere, with liberal and conservative blogs tending to link to other blogs with a similar political slant, and not to one another. As political discussion and activity increasingly moves online, the power of framing political discourses is shifting from mass media to social media. Continued examination of political interactions online is critical, and we extend this line of research by examining the activities of political users within the Wikipedia community. First, we examined how users in Wikipedia choose to display (or not to display) their political affiliation. Next, we more closely examined the patterns of cross-party interaction and community participation among those users proclaiming a political affiliation. In contrast to previous analyses of other social media, we did not find strong trends indicating a preference to interact with members of the same political party within the Wikipedia community. Our results indicate that users who proclaim their political affiliation within the community tend to proclaim their identity as a "Wikipedian" even more loudly. It seems that the shared identity of "being Wikipedian" may be strong enough to triumph over other potentially divisive facets of personal identity, such as political affiliation.Comment: 33 pages, 5 figure

    SUPER: Towards the Use of Social Sensors for Security Assessments and Proactive Management of Emergencies

    Get PDF
    Social media statistics during recent disasters (e.g. the 20 million tweets relating to 'Sandy' storm and the sharing of related photos in Instagram at a rate of 10/sec) suggest that the understanding and management of real-world events by civil protection and law enforcement agencies could benefit from the effective blending of social media information into their resilience processes. In this paper, we argue that despite the widespread use of social media in various domains (e.g. marketing/branding/finance), there is still no easy, standardized and effective way to leverage different social media streams -- also referred to as social sensors -- in security/emergency management applications. We also describe the EU FP7 project SUPER (Social sensors for secUrity assessments and Proactive EmeRgencies management), started in 2014, which aims to tackle this technology gap
    corecore