13,405 research outputs found

    Multipole expansion at the level of the action

    Full text link
    Sources of long wavelength radiation are naturally described by an effective field theory (EFT) which takes the form of a multipole expansion. Its action is given by a derivative expansion where higher order terms are suppressed by powers of the ratio of the size of the source over the wavelength. In order to determine the Wilson coefficients of the EFT, i.e. the multipole moments, one needs the mapping between a linear source term action and the multipole expansion form of the action of the EFT. In this paper we perform the multipole expansion to all orders by Taylor expanding the field in the source term and then decomposing the action into symmetric trace free tensors which form irreducible representations of the rotation group. We work at the level of the action, and we obtain the action to all orders in the multipole expansion and the exact expressions for the multipole moments for a scalar field, electromagnetism and linearized gravity. Our results for the latter two cases are manifestly gauge invariant. We also give expressions for the energy flux and the (gauge dependent) radiation field to all orders in the multipole expansion. The results for linearized gravity are a component of the EFT framework NRGR and will greatly simplify future calculations of gravitational wave observables in the radiation sector of NRGR.Comment: 39 pages, some typos corrected, published versio

    SU(5) Heterotic Standard Model Bundles

    Full text link
    We construct a class of stable SU(5) bundles on an elliptically fibered Calabi-Yau threefold with two sections, a variant of the ordinary Weierstrass fibration, which admits a free involution. The bundles are invariant under the involution, solve the topological constraint imposed by the heterotic anomaly equation and give three generations of Standard Model fermions after symmetry breaking by Wilson lines of the intermediate SU(5) GUT-group to the Standard Model gauge group. Among the solutions we find some which can be perturbed to solutions of the Strominger system. Thus these solutions provide a step toward the construction of phenomenologically realistic heterotic flux compactifications via non-Kahler deformations of Calabi-Yau geometries with bundles. This particular class of solutions involves a rank two hidden sector bundle and does not require background fivebranes for anomaly cancellation.Comment: 17 page

    Asymmetric Quantum Shot Noise in Quantum Dots

    Full text link
    We analyze the frequency-dependent noise of a current through a quantum dot which is coupled to Fermi leads and which is in the Coulomb blockade regime. We show that the asymmetric shot noise as function of frequency shows steps and becomes super-Poissonian. This provides experimental access to the quantum fluctuations of the current. We present an exact calculation for a single dot level and a perturbative evaluation of the noise in Born approximation (sequential tunneling regime but without Markov approximation) for the general case of many levels with charging interaction.Comment: 5 pages, 2 figure

    Probing molecular free energy landscapes by periodic loading

    Get PDF
    Single molecule pulling experiments provide information about interactions in biomolecules that cannot be obtained by any other method. However, the reconstruction of the molecule's free energy profile from the experimental data is still a challenge, in particular for the unstable barrier regions. We propose a new method for obtaining the full profile by introducing a periodic ramp and using Jarzynski's identity for obtaining equilibrium quantities from non-equilibrium data. Our simulated experiments show that this method delivers significant more accurate data than previous methods, under the constraint of equal experimental effort.Comment: 4 pages, 3 figure

    Visualization of oxygen distribution patterns caused by coral and algae.

    Get PDF
    Planar optodes were used to visualize oxygen distribution patterns associated with a coral reef associated green algae (Chaetomorpha sp.) and a hermatypic coral (Favia sp.) separately, as standalone organisms, and placed in close proximity mimicking coral-algal interactions. Oxygen patterns were assessed in light and dark conditions and under varying flow regimes. The images show discrete high oxygen concentration regions above the organisms during lighted periods and low oxygen in the dark. Size and orientation of these areas were dependent on flow regime. For corals and algae in close proximity the 2D optodes show areas of extremely low oxygen concentration at the interaction interfaces under both dark (18.4 ± 7.7 µmol O2 L(- 1)) and daylight (97.9 ± 27.5 µmol O2 L(- 1)) conditions. These images present the first two-dimensional visualization of oxygen gradients generated by benthic reef algae and corals under varying flow conditions and provide a 2D depiction of previously observed hypoxic zones at coral algae interfaces. This approach allows for visualization of locally confined, distinctive alterations of oxygen concentrations facilitated by benthic organisms and provides compelling evidence for hypoxic conditions at coral-algae interaction zones

    Axion interpretation of the PVLAS data?

    Full text link
    The PVLAS collaboration has recently reported the observation of a rotation of the polarization plane of light propagating through a transverse static magnetic field. Such an effect can arise from the production of a light, m_A ~ meV, pseudoscalar coupled to two photons with coupling strength g_{A\gamma} ~ 5x10^{-6} GeV^{-1}. Here, we review these experimental findings, discuss how astrophysical and helioscope bounds on this coupling can be evaded, and emphasize some experimental proposals to test the scenario.Comment: 4 pages, 1 figure, jpconf.cls, talk presented at the ninth International Conference on Topics in Astroparticle and Underground Physics, TAUP 2005, Zaragoza, Spain, September 10-14, 200

    Time-dependent spin-wave theory

    Full text link
    We generalize the spin-wave expansion in powers of the inverse spin to time-dependent quantum spin models describing rotating magnets or magnets in time-dependent external fields. We show that in these cases, the spin operators should be projected onto properly defined rotating reference frames before the spin components are bosonized using the Holstein-Primakoff transformation. As a first application of our approach, we calculate the reorganization of the magnetic state due to Bose-Einstein condensation of magnons in the magnetic insulator yttrium-iron garnet; we predict a characteristic dip in the magnetization which should be measurable in experiments.Comment: 6 pages, 5 figures, final version published in PR

    Nonlinear Ionic Conductivity of Thin Solid Electrolyte Samples: Comparison between Theory and Experiment

    Full text link
    Nonlinear conductivity effects are studied experimentally and theoretically for thin samples of disordered ionic conductors. Following previous work in this field the {\it experimental nonlinear conductivity} of sodium ion conducting glasses is analyzed in terms of apparent hopping distances. Values up to 43 \AA are obtained. Due to higher-order harmonic current density detection, any undesired effects arising from Joule heating can be excluded. Additionally, the influence of temperature and sample thickness on the nonlinearity is explored. From the {\it theoretical side} the nonlinear conductivity in a disordered hopping model is analyzed numerically. For the 1D case the nonlinearity can be even handled analytically. Surprisingly, for this model the apparent hopping distance scales with the system size. This result shows that in general the nonlinear conductivity cannot be interpreted in terms of apparent hopping distances. Possible extensions of the model are discussed.Comment: 7 pages, 6 figure
    • …
    corecore