2,296 research outputs found

    Tunable X-ray source by Thomson scattering during laser-wakefield acceleration

    Full text link
    We report results on all-optical Thomson scattering intercepting the acceleration process in a laser wakefield accelerator. We show that the pulse collision position can be detected using transverse shadowgraphy which also facilitates alignment. As the electron beam energy is evolving inside the accelerator, the emitted spectrum changes with the scattering position. Such a configuration could be employed as accelerator diagnostic as well as reliable setup to generate x-rays with tunable energy

    A bacteria colony-based screen for optimal linker combinations in genetically encoded biosensors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluorescent protein (FP)-based biosensors based on the principle of intramolecular Förster resonance energy transfer (FRET) enable the visualization of a variety of biochemical events in living cells. The construction of these biosensors requires the genetic insertion of a judiciously chosen molecular recognition element between two distinct hues of FP. When the molecular recognition element interacts with the analyte of interest and undergoes a conformational change, the ratiometric emission of the construct is altered due to a change in the FRET efficiency. The sensitivity of such biosensors is proportional to the change in ratiometric emission, and so there is a pressing need for methods to maximize the ratiometric change of existing biosensor constructs in order to increase the breadth of their utility.</p> <p>Results</p> <p>To accelerate the development and optimization of improved FRET-based biosensors, we have developed a method for function-based high-throughput screening of biosensor variants in colonies of <it>Escherichia coli</it>. We have demonstrated this technology by undertaking the optimization of a biosensor for detection of methylation of lysine 27 of histone H3 (H3K27). This effort involved the construction and screening of 3 distinct libraries: a domain library that included several engineered binding domains isolated by phage-display; a lower-resolution linker library; and a higher-resolution linker library.</p> <p>Conclusion</p> <p>Application of this library screening methodology led to the identification of an optimized H3K27-trimethylation biosensor that exhibited an emission ratio change (66%) that was 2.3 × improved relative to that of the initially constructed biosensor (29%).</p

    Genetic Parameters of Growth and Adaptive Traits in Aspen (Populus tremuloides): Implications for Tree Breeding in a Warming World

    Get PDF
    Aspen (Populus tremuloides Michx) is a widespread commercial forest tree of high economic importance in western Canada and has been subject to tree improvement efforts over the past two decades. Such improvement programs rely on accurate estimates of the genetic gain in growth traits and correlated response in adaptive traits that are important for forest health. Here, we estimated genetic parameters in 10 progeny trials containing \u3e30,000 trees with pedigree structures based on a partial factorial mating design that includes 60 half-sibs, 100 full-sib families and 1,400 clonally replicated genotypes. Estimated narrow-sense and broad-sense heritabilities were low for height and diameter (~0.2), but moderate for the dates of budbreak and leaf senescence (~0.4). Furthermore, estimated genetic correlations between growth and phenology were moderate to strong with tall trees being associated with early budbreak (r = -0.3) and late leaf senescence (r = -0.7). Survival was not compromised, but was positively associated with early budbreak or late leaf senescence, indicating that utilizing the growing season was more important for survival and growth than avoiding early fall or late spring frosts. These result suggests that populations are adapted to colder climate conditions and lag behind environmental conditions to which they are optimally adapted due to substantial climate warming observed over the last several decades for the study area

    TAP: Time-Aware Provenance for Distributed Systems

    Get PDF
    In this paper, we explore the use of provenance for analyzing execution dynamics in distributed systems. We argue that provenance could have significant practical benefits for system administrators, e.g., for reasoning about changes in a system’s state, diagnosing protocol misconfigurations, detecting intrusions, and pinpointing performance bottlenecks. However, to realize this vision, we must revisit several aspects of provenance management. As a first step, we present time-aware provenance (TAP), an enhanced provenance model that explicitly represents time, distributed state, and state changes. We outline our research agenda towards developing novel query processing, languages, and optimization techniques that can be used to efficiently and securely query time-aware provenance, even in the presence of transient state or untrusted nodes
    corecore