
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

6-2011

TAP: Time-Aware Provenance for Distributed
Systems
Wenchao Zhuo
University of Pennsylvania

Ling Ding
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania, ahae@cis.upenn.edu

Zachary G. Ives
University of Pennsylvania, zives@cis.upenn.edu

Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Part of the Computer Sciences Commons

Zhuo, W., Ding, L., Haeberlen, A., Ives, Z., & Loo, B., TAP: Time-Aware Provenance for Distributed Systems, 3rd USENIX Workshop on the Theory and
Practice of Provenance (TaPP'11), June 2011, http://static.usenix.org/event/tapp11/tech/

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/611
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Wenchao Zhuo, Ling Ding, Andreas Haeberlen, Zachary G. Ives, and Boon Thau Loo, "TAP: Time-Aware Provenance for Distributed
Systems", . June 2011.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76393663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://static.usenix.org/event/tapp11/tech/
http://repository.upenn.edu/cis_papers/611
mailto:libraryrepository@pobox.upenn.edu

TAP: Time-Aware Provenance for Distributed Systems

Abstract
In this paper, we explore the use of provenance for analyzing execution dynamics in distributed systems. We
argue that provenance could have significant practical benefits for system administrators, e.g., for reasoning
about changes in a system’s state, diagnosing protocol misconfigurations, detecting intrusions, and
pinpointing performance bottlenecks. However, to realize this vision, we must revisit several aspects of
provenance management. As a first step, we present time-aware provenance (TAP), an enhanced provenance
model that explicitly represents time, distributed state, and state changes. We outline our research agenda
towards developing novel query processing, languages, and optimization techniques that can be used to
efficiently and securely query time-aware provenance, even in the presence of transient state or untrusted
nodes.

Disciplines
Computer Sciences

Comments
Zhuo, W., Ding, L., Haeberlen, A., Ives, Z., & Loo, B., TAP: Time-Aware Provenance for Distributed Systems,
3rd USENIX Workshop on the Theory and Practice of Provenance (TaPP'11), June 2011,
http://static.usenix.org/event/tapp11/tech/

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/611

http://static.usenix.org/event/tapp11/tech/
http://repository.upenn.edu/cis_papers/611?utm_source=repository.upenn.edu%2Fcis_papers%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages

TAP: Time-aware Provenance for Distributed Systems

Wenchao Zhou Ling Ding Andreas Haeberlen Zachary Ives Boon Thau Loo
University of Pennsylvania

{wenchaoz, lingding, ahae, zives, boonloo}@cis.upenn.edu

Abstract
In this paper, we explore the use of provenance for ana-
lyzing execution dynamics in distributed systems. We ar-
gue that provenance could have significant practical ben-
efits for system administrators, e.g., for reasoning about
changes in a system’s state, diagnosing protocol miscon-
figurations, detecting intrusions, and pinpointing perfor-
mance bottlenecks. However, to realize this vision, we
must revisit several aspects of provenance management.
As a first step, we present time-aware provenance (TAP),
an enhanced provenance model that explicitly represents
time, distributed state, and state changes. We outline
our research agenda towards developing novel query pro-
cessing, languages, and optimization techniques that can
be used to efficiently and securely query time-aware
provenance, even in the presence of transient state or un-
trusted nodes.

1 Introduction

Provenance [2] has proven to be a versatile concept.
It has been successfully applied to a variety of are-
as [3, 4, 7, 16, 17, 19], and this paper proposes an ad-
dition to this list. We observe that, in the context of dis-
tributed systems, it is very common for system adminis-
trators to perform analysis tasks that essentially amount
to network provenance [21] queries. For example, they
might ask diagnostic queries to determine the root cause
of a malfunction [18], forensic queries to identify the
source of an intrusion [10], or profiling queries to find
the reason for suboptimal performance [20]. At the heart
of all these queries is a question about data flows across
nodes – in other words, a question about provenance.
Thus, we should be able to bring to bear many of the
techniques originally developed for provenance in other
domains.

Prior work [21] has provided initial evidence that one
can efficiently maintain and query provenance in dis-
tributed systems, even at Internet scale. However, to
support the full range of functionality required for an-
alyzing distributed systems, we must still address several
open challenges. Consider a simple use case from In-
ternet interdomain routing: a network operator wants to
investigate why his route to eBay changed from r1 to r2

a minute ago. Existing provenance systems cannot eas-
ily answer this question because it a) does not ask about

the provenance of state, but rather about a state change;
and b) it does not ask about state that currently exists, but
rather about state that existed in the past.

Some existing systems [1, 16] do retain certain prove-
nance data about disappeared state and state changes; for
example, PASS [16] maintains versions of provenance,
and infers the causes for state changes by comparing old
and current versions. This is different from the prop-
erty we have in mind. First, we want to explicitly cap-
ture causality: if a file A depends on a thousand other
files and one of these files, say B, is changed, we want
the provenance of the change in A to be attributed to the
change in B. Second, since one of our potential use cases
is forensics, we are interested in strong security guaran-
tees, i.e., we would like provenance queries to be answer-
able even if an adversary is actively trying to cover his
traces. Provenance should be remain accessible even if
the adversary deletes telltale files, or even compromises
some of the nodes on which the provenance is stored.

In summary, we see the main challenges as follows:

• Challenge #1: Transient and inconsistent state.
We need new techniques for maintaining and query-
ing provenance, such that consistent and complete
query results are guaranteed despite network vari-
ability, such as instabilities or oscillations.

• Challenge #2: Explanations for state changes.
We need an efficient mechanism that can explain
not only why a certain datum exists, but also why
it has appeared, disappeared, or changed.

• Challenge #3: Security without trusted nodes.
We need a provenance system that can correctly
answer provenance queries even if an attacker has
managed to compromise some part of the system.

As a starting point, we introduce time-aware provenance
(TAP), a novel provenance model that addresses the first
two challenges. We also outline a research agenda to-
wards addressing further aspects of provenance man-
agement in distributed systems. These include (1) new
provenance models and maintenance strategies for cap-
turing the time, distribution, and causality of updates, (2)
novel query processing and optimization techniques for
efficiently and securely answering queries at scale, and
(3) provenance query languages that enable a declarative
specification of time and changes.

1

a b

c
5

1
3

at time t2 > t1

a b

c
5 3

at time t1

Figure 1: An three-node example net-
work. The best path between node a

and node c (highlighted) changes in
response to a topology change.

DELETE(c, minCost(@c,a,5), t3)

INSERT(c, cost(@c,a,4), t3)

update
INSERT(c, minCost(@c,a,4), t3)

INSERT(b, mincost(@b,a,1), t2)INSERT(b, link(@b,c,3), t1)

……

mc3@c

minCost(@c,a,4)

cost(@c,a,4)

link(@b,c,3)

link(@b,a,1)

minCost(@b,a,1)

cost(@b,a,1)

mc2@b

mc1@b

mc3@b

DERIVE(c, minCost(@c,a,4), mc3, t3)

DERIVE(b, cost(@c,a,4), mc2@b, t2)

DERIVE(b, minCost(@b,a,1), mc3, t2)

Figure 2: Comparison between classical provenance (left) and time-aware
provenance (right). The tree on the left explains why the cheapest path from
c to a has cost 4; the tree on the right explains why the cost has changed
from 5 to 4. Message transmissions between nodes are indicated by a cloud.

2 Background

To set the stage for our subsequent discussion, we first
describe a basic provenance model, which we will extend
in Section 3 to arrive at TAP.

2.1 System Model

We assume that the distributed system consists of a set of
nodes, and that the state of each node can be expressed
as a set of tuples (typically with fixed schemas). The
execution logic is encoded in a set of derivation rules
that specify how tuples can be derived from each other
or from base tuples, which correspond to inputs. For
simplicity, we will assume that the derivation rules are
explicit. This is the case, e.g., for systems that are writ-
ten in a declarative language such as Network Datalog
(NDlog) [13]. However, TAP is not specific to NDlog
and can be applied to systems implemented using imper-
ative languages.

As a concrete example, we show the rules for a very
simple routing protocol, MINCOST 1, that computes the
lowest cost between each pair of nodes in a network:

mc1 cost(@S,D,C) :- link(@S,D,C).
mc2 cost(@S,D,C) :- link(@Z,S,C1),

mincost(@Z,D,C2), C=C1+C2.
mc3 mincost(@S,D,MIN<C>) :- cost(@S,D,C).

Note particularly that the derivation rules include state
from different nodes. In NDlog, this is expressed with
the location specifier @, which is followed by the name
of the node on which the tuple resides. In this system, the
base tuple link(@S,D,C) exists if node S has a direct
link to node D with cost C. The tuple cost(@S,D,C) is

1The MINCOST protocol can be extended to specify more complex
routing protocols, such as distance-vector and path-vector.

derived when S has a (possibly indirect) path to Dwith to-
tal cost C, which can either be a direct link (mc1) or a path
through another node Z (mc2). Rule mc3 aggregates all
paths with the same sources and destinations to compute
the minimal path cost. The protocol runs continuously,
and updates path costs as links appear or disappear.

2.2 Network Provenance
Existing provenance models, e.g., the model in [2] and
[21], capture the dependencies between tuples in a graph
that consists of tuple vertices and rule execution vertices,
and in which the edges represent data flows. Decentral-
ized models for distributed systems – also known as net-
work provenance models – partition this graph in some
way, e.g., by the location specifiers, and store each parti-
tion on a different node.

Consider the execution of the MINCOST protocol in
the three-node network that is shown in Figure 1. Ini-
tially, at time t1, the system is in a quiescent state. Then,
at time t2 > t1, a link with cost 1 is inserted between
nodes a and c, which changes the topology of the net-
work. As a consequence, the cost of c’s cheapest path
to a changes from 5 to 4; however, due to communica-
tion delays, the change is not propagated to c until time
t3 > t2. The left part of Figure 2 shows the provenance
of the resulting tuple mincost(@c,a,4), which is gen-
erated from rule mc3 at node c. It is based on the tuple
cost(@c,a,4), which corresponds to the path c-b-a.

This example illustrates two limitations of existing
network provenance systems. First, existing systems can
correctly answer provenance queries for the updated tu-
ple once the system is in a stable state again (after time
t3); however, the answer to such a query can be in-
correct or incomplete between t2 and t3, when some
nodes have already received the update and others have
not. While inconsistencies due to transient state could

2

be resolved by maintaining provenance in bi-temporal
databases [8, 11], we propose, in the next section, a
provenance model that inherently captures temporal in-
formation. Second, because causality2 is not explicitly
represented in the provenance graph, it is difficult to trace
a state change back to its root causes.

3 Time-aware Provenance

Time-aware provenance (TAP) addresses these limita-
tions by adding the following two features: First, in ad-
dition to storing dependencies between tuples that cur-
rently exist, TAP also remembers dependencies between
tuples that existed at some point in the past, which en-
ables TAP to provide consistent answers to provenance
queries even while the system is in a transient state. Sec-
ond, TAP’s provenance model explicitly represents tuple
changes, as well as the dependencies between them.

Vertices. TAP’s provenance graph contains the follow-
ing four types of vertices:

• INSERT(n, τ, t) and DELETE(n, τ, t): Tuple τ was in-
serted (deleted) on node n at time t;

• DERIVE(n, τ, R, t) and UNDERIVE(n, τ, R, t): Tuple
τ was derived (underived) via derivation rule R on
node n at time t.

The right half of Figure 2 shows a piece of the TAP
graph that would have been generated in the example
scenario from Section 2.2. Overall, the graph shows that
the tuple mincost(@c,a,5) was deleted on node c at
time t3 because the new link a-c was inserted at time
t1. For example, the node DERIVE(mc2@b) shows that
cost(@c,a,4) was derived on node b at time t2 (and
subsequently sent to node c) because a) a link b-c with
cost three already existed at time t2 (since its insertion at
time t1), and b) the tuple mincost(@b,a,1) was newly
derived at t2 via rule mc3. Note that, among the imme-
diate predecessors of a DERIVE (or UNDERIVE) vertex, the
INSERT (or DELETE) with the most recent timestamp is
the event that triggered the rule. The latter derivation was
caused by the insertion of the base tuple link(@b,a,1),
which corresponds to the addition of the new link.

Interestingly, the additional time dimension on the
provenance graph enables another use of provenance,
namely querying the effects of a state change. For ex-
ample, if we want to determine how the insertion of the
new link a-b has affected the system, we can simply lo-
cate the corresponding INSERT vertex in the graph and
and traverse the edges in the reverse direction.

2Note that TAP’s concept of causality is typically referred to as
data lineage in the database literature. Our notion of causality dif-
fers from [14, 15], which take the lineage information to infer ‘actual’
contributions of base tuples to the query results.

Edges. In most existing provenance models, the edges
represent data flows. TAP’s provenance graph contains
these edges as well, but, in order to answer queries about
state changes, it additionally needs to capture a ‘causal-
ity flow’ between updates. In many cases, the two flows
are aligned, but there are cases where they differ. For ex-
ample, if a primary-key constraint exists in the system,
the derivation of a tuple τ1 may cause the deletion of
a tuple τ2 that shares τ1’s primary key, even though no
data flows from τ1 to τ2. A similar situation can occur
for other types of constraints, such as aggregation. To
represent such causality flows, TAP’s provenance graph
includes additional update edges.

The right part of Figure 2 contains an instance of such
an edge at the DELETE vertex of mincost(@c,a,5) (in-
dicated by a dotted line). This deletion was caused by the
aggregation constraint, i.e., the minimal cost changed be-
cause a lower-cost path to node a became available.

Derivations. The TAP graph can be captured via
the evaluation of delta rules of the form action :-

event, conditions, These rules can be ob-
tained by rewriting the original derivation rules, us-
ing standard techniques from incremental view mainte-
nance [5]. Thus, it should be possible to leverage exist-
ing distributed query processing engines with only minor
changes. Briefly, for each derivation rule p :- p1, p2,

. . . ,pn, we generate two delta rules for each predicate
pi – one for insertions and the other for deletions. The
rules are of the form 4p :- p1, . . ., 4pi, . . ., pn.
The event (in this case, 4pi) is represented as an INSERT

or DELETE vertex, the conditions (the other pk) are repre-
sented as a sequence of INSERT (or DELETE) vertices that
support the existence of pk, and the action itself (4p) is
represented as a DERIVE or UNDERIVE. Each action then
in turn causes a new event.

4 Provenance Maintenance

The graph representation of TAP can be stored in rela-
tional tables in a format similar to that in [21]. Each ver-
tex can be maintained as a tuple according to the schema
presented in Section 3, along with an additional attribute
that stores the (potentially distributed) pointers to its di-
rect contributing vertices.

In theory, the additional time dimension could be im-
plemented by performing provenance versioning, i.e., by
keeping a copy of the provenance tables whenever the
data dependencies change. However, the storage cost
would be enormous, especially in distributed systems
that run for a long time with continuous updates. We
discuss three alternative approaches that are likely to be
more efficient; each comes with its own set of tradeoffs.

3

4.1 Three approaches

Provenance deltas. Instead of maintaining the full
provenance information in each version, we can only
record the deltas between adjacent versions. This re-
duces the storage cost considerably, but, when answer-
ing a query, the deltas need to be incrementally applied
to regenerate the full provenance information.

Per-node input logs. If each node runs a deterministic
algorithm, we can choose not to actively maintain prove-
nance during execution time at all. Instead, we can sim-
ply record all the inputs (such as network messages, disk
reads, etc) at each node. During a query, we can use de-
terministic replay to reproduce the system execution, and
we can generate provenance on the fly.

System input logs. To reduce the storage overhead even
further, we can record only the raw inputs (i.e., the base
tuples) of the entire system. If the system’s execution is
deterministic, we can replay it based on the recorded in-
puts and generate the provenance information as before.
This approach comes at the expense of higher query-
ing overhead: since only the raw system-wide inputs are
recorded, we cannot independently replay a single node;
instead, we must replay the entire system execution.

To avoid replaying the deltas (or input logs) from
the very beginning of the system execution, each node
can periodically record a checkpoint of its current state.
Thus, replay can start from the latest checkpoint. To save
space, the checkpoints could be discarded after a certain
amount of time.

4.2 Tradeoffs

The maintenance approaches introduced in the previous
section offer a spectrum of tradeoffs between mainte-
nance overhead and querying performance. The best
tradeoff depends on a variety of factors, some of which
we discuss below.

Querying frequency. We expect that the cost for
query processing will be a function of 1) how frequently
queries are issued, 2) how far apart the checkpoints are
in the log, and 3) how much work is required to replay
a log segment. If queries are expected to be rare, we
can save space by maintaining input logs, and by taking
checkpoints only occasionally. In this case, answering a
query can be expensive because the relevant parts of the
provenance graph must be reconstructed by replaying the
execution of certain nodes from their latest checkpoint.

If queries are more frequent, we can trade some
space for a lower query-processing cost by 1) taking
checkpoints more frequently, which reduces the expected
length of the log segment that needs to be replayed,
and/or 2) maintaining provenance deltas rather than input

logs. The latter reduces the computational cost because
replay only needs to incrementally apply the changes to
the provenance data, but not repeat the processing steps
that produced them.

System runtime. Many distributed systems run for an
indefinite amount of time. For example, the Internet’s in-
terdomain routing system has been running for decades.
In such systems, checkpoints are indispensable because
it is not practical for the querier to replay the execution of
the system, or even just a single node, from the very be-
ginning. On the other hand, there are distributed systems
that run only for a limited time. For example, a MapRe-
duce cluster might be set up to process just a small num-
ber of large jobs, and many multiplayer games only last
for a few hours. In this case, replaying the entire log may
be practical, and if so, we can save even more space by
not maintaining checkpoints at all.

Local derivations. Distributed systems differ in the rela-
tive frequency of remote derivations, which involve mes-
sage exchanges between nodes, and purely local deriva-
tions. When most derivations are remote, both prove-
nance deltas and input logs should perform equally well,
since most state changes (which are recorded in prove-
nance deltas) are due to incoming messages (which are
recorded in the input logs). However, there are systems
where most derivations are local; for example, a dis-
tributed machine-learning algorithm might just send a
very few messages to transfer the raw data and the re-
sults. In this case, input logs should consume a lot less
space than provenance deltas, but they would need a lot
more computation when the provenance graph needs to
be reconstructed to answer a query.

Trust. If all the nodes in the distributed system are
trusted, we can safely optimize for query performance.
However, if the system is large enough, it almost in-
evitably contains, at any given time, some nodes that are
faulty or have been misconfigured or compromised. In
this case, provenance deltas are risky because the querier
cannot easily see whether a given delta was recorded cor-
rectly. Input logs are safer because the querier itself re-
generates the provenance. Ideally, the correctness and
completeness of the inputs in the logs would be verifi-
able through some other means.

In summary, there is no clear ‘winner’ among the three
approaches we have proposed in Section 4.1; rather, the
best approach depends on the specific use case in which
TAP is applied. It would be interesting to design a prove-
nance system that can adaptively select the best approach
at runtime – for example, based on the observed query
frequency and the workload characteristics.

4

5 Provenance Querying

To query TAP’s provenance graph, a suitable query lan-
guage is needed. We are currently working on TapQL,
an extension of ProQL [9] that incorporates new lan-
guage primitives to enable query specifications for time
and changes. To illustrate, the following TapQL query
can be used to analyze the (transitive) effects of a link
insertion at a particular time in protocol execution:

FOR [-mincost $X] <-+ [+link $Y]
WHERE $Y.time>t
INCLUDE PATH $X <-+ $Y
RETURN $X

[-mincost $X] binds variable X to the DELETE vertices
of mincost, and [+link $Y] binds Y to the INSERT ver-
tices of link. INCLUDE PATH $X <-+ $Y confines the
search within the subgraph between vertices X and Y. The
query returns the DELETE vertices of the mincost tuples
that are triggered by the insertion of link tuples (with
timestamps bigger than t).

If TAP maintains both forward and backward edges
(i.e., from causes to effects and vice versa), provenance
queries can ask for causality or effect chains, or even a
combination of both. For example, to analyze the ef-
fects of a link insertion, one iterates through all the
INSERT link vertices and follows the forward edges to
reach DELETE mincost vertices. On the other hand, to
query the cause of a deleted mincost vertex would re-
quire edge traversal in the opposite direction. We are
planning to enhance TapQL to allow users to specify ei-
ther cause or effect queries.

5.1 Querying Strategy

To process TapQL queries, we propose a novel multi-
staged query processing strategy (shown in Figure 3),
which is specifically optimized for replays of provenance
deltas or input logs. Our proposed strategy consists of the
following three stages:

• A macroquery iterates through potential candidate
tuples, e.g., all the mincost tuples in the exam-
ple query, and issues microqueries to determine the
provenance of each candidate tuple. Microqueries
can be evaluated in parallel to optimize the overall
query latency.

• A microquery performs a distributed recursive eval-
uation for the provenance of a single tuple. In
essence, this amounts to a recursive traversal of the
provenance graph [21] until base tuples are reached.
When a tuple satisfies the constraints in the query,
the microquery should return the provenance of that
tuple in the desired form, e.g. as a set of base tuples.

<t1, τ1> <t2, τ2> <t3, τ3> <tn, τN>

macroquery
......

microquery microquery microquery microquery......

Candidates

t 2, τ
2

t 2a, τ
2a

t2a , τ2a
t2b , τ2b

t2z, τ2z

null

logs@N1

per-vertex
query

ch
kp

oi
nt

lo
gst 2

, τ
2

logs@N2

per-vertex
query

ch
kp

oi
nt

lo
gst 2
a,
τ 2

a

logs@Nm

per-vertex
query

ch
kp

oi
nt

lo
gst 2
z,
τ 2

z

......

......

Figure 3: The multi-staged querying strategy. 〈tx, τx〉
refers to a tuple τx at a given time tx.

• A vertex query returns the set of vertices that are ad-
jacent to a given vertex, as well as the corresponding
edges. Vertex queries are the basic building block of
the provenance querying. For instance, in Figure 3,
〈t2a, τ2a〉 is the returned result for 〈t2, τ2〉. Vertex
queries can be answered by replaying the prove-
nance deltas or input logs to reproduce the relevant
parts of the provenance graph.

5.2 Optimizations

There are several opportunities for optimizations at each
stage of our proposed querying strategy. For instance,
we can apply the following two optimizations, originally
proposed in [21], at the microquery level:

• Early query termination. During microquery eval-
uation, the query can be terminated early if the re-
sults are guaranteed to be in (or out of) the result
set. This is common for queries that compute mono-
tonically increasing aggregate values with selection
predicates, e.g., a query for vertices with more than
a given number of unique derivations. In this case,
the results can be returned (or discarded) as soon as
the constraint is satisfied (or can no longer be satis-
fied).

• Another optimization is to cache query results, and
reuse them for answering subsequent queries. Note
that cache invalidation is not needed – as the query
results are the fact of the execution history, and thus
will not change over time.

• The overall querying performance would greatly
benefit from reducing the overhead of perform-
ing vertex queries, which is carried out by re-
playing provenance deltas (or input logs). Exist-
ing work [12] has proposed techniques that allow

5

efficient incremental view maintenance using the
already-captured provenance information.

One can also apply optimizations at the macroquery
level. Traditional database optimizations, such as cost
estimation of alternative query plans and heuristics,
should generally be applicable here. For instance, if a
provenance query involves tuples in multiple relations,
we can start from relations with low cardinalities.

Interestingly, we can trade query response time for
communication overhead at the macroquery level by us-
ing cached query results at the microquery level. Instead
of issuing all microqueries at once, the query processor
can choose to execute one microquery at a time, to maxi-
mize the likelihood of cache hits for subsequent queries.

6 Secure Provenance Querying

So far, we have assumed that all the nodes cooperate
with the querier. However, in large distributed systems,
it is not uncommon for some of the nodes to be faulty or
compromised by an adversary. When a system contains
such compromised nodes, provenance could be useful as
a forensic tool; however, the adversary could attempt to
cover his traces by deliberately tampering with the prove-
nance information, causing query results to be incorrect
and/or incomplete. Thus, it would be useful to have a
provenance system that can give correctness guarantees
even when it is under attack.

Not all adversaries are equally powerful. Often, adver-
saries only manage to compromise non-privileged soft-
ware on the affected nodes. If the provenance informa-
tion is extracted and maintained by a privileged compo-
nent, such as the operating system kernel or a hypervisor,
it is still possible to answer queries correctly. However,
sometimes adversaries manage to compromise even priv-
ileged components, and can effectively take complete
control over the affected nodes. During such attacks, cor-
rect answers to provenance queries would be particularly
useful, but they are also particularly difficult to obtain.

We are currently working on a system that can answer
distributed provenance queries even when some nodes
have been completely compromised by an adversary. A
perfect solution to this problem is impossible: for ex-
ample, if the provenance of a tuple τ is stored on a set
S of nodes, a query for the provenance of τ cannot be
answered correctly if the adversary manages to compro-
mise all the nodes in S. However, based on ideas from
tamper-evident logging and auditing [6], it is possible to
obtain a practical system with only slightly weaker guar-
antees.

Acknowledgments

This work was supported by NSF grants IIS-0477972,
IIS-0713267, CNS-0721541, IIS-0812270, CCF-
0820208, CNS-0845552, CNS-1040672, CNS-1054229,
and AFOSR MURI grant FA9550-08-1-0352.

References
[1] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan. Archiving

scientific data. ACM Trans. Database Syst., 29:2–42, 2004.
[2] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A

characterization of data provenance. In Proc. ICDT, 2001.
[3] S. B. Davidson and J. Freire. Provenance and scientific work-

flows: challenges and opportunities. In Proc. SIGMOD, 2008.
[4] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen. Update

exchange with mappings and provenance. In Proc. VLDB, 2007.
[5] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining

Views Incrementally. In Proc. SIGMOD, 1993.
[6] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-

tical accountability for distributed systems. In Proc. SOSP, Oct
2007.

[7] R. Hasan, R. Sion, and M. Winslett. Preventing history forgery
with secure provenance. ACM Trans. Storage, 5(4):1–43, 2009.

[8] C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, and R. T. Snod-
grass. A glossary of temporal database concepts. SIGMOD
Record., 21:35–43, 1992.

[9] G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In Proc. SIGMOD, 2010.

[10] S. T. King and P. M. Chen. Backtracking intrusions. ACM Trans.
Comput. Syst., 23(1):51–76, 2005.

[11] A. Kumar, V. J. Tsotras, and C. Faloutsos. Designing access
methods for bitemporal databases. IEEE Trans. on Knowl. and
Data Eng., 10:1–20, 1998.

[12] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo. Main-
taining recursive views of regions and connectivity in networks.
IEEE Trans. on Knowl. and Data Eng., 22:1126–1141, 2010.

[13] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Heller-
stein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.
Declarative Networking. Commun. ACM, 52:87–95, 2009.

[14] A. Meliou, W. Gatterbauer, J. Y. Halpern, C. Koch, K. F. Moore,
and D. Suciu. Causality in databases. IEEE Data Eng. Bull.,
33(3):59–67, 2010.

[15] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. The com-
plexity of causality and responsibility for query answers and non-
answers. Proc. VLDB Endowment, 4:34–45, 2010.

[16] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In Proc. USENIX
ATC, 2006.

[17] C. Ré and D. Suciu. Approximate lineage for probabilistic
databases. Proc. VLDB Endowment, 1, 2008.

[18] R. Teixeira and J. Rexford. A measurement framework for pin-
pointing routing changes. In Proc. ACM SIGCOMM Network
Troubleshooting Workshop, Sep 2004.

[19] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In Proc. CIDR, 2005.

[20] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan, S. Kandula,
and C. Kim. Profiling network performance for multi-tier data
center applications. In Proc. NSDI, 2011.

[21] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
querying and maintenance of network provenance at Internet-
scale. In Proc. SIGMOD, 2010.

6

	University of Pennsylvania
	ScholarlyCommons
	6-2011

	TAP: Time-Aware Provenance for Distributed Systems
	Wenchao Zhuo
	Ling Ding
	Andreas Haeberlen
	Zachary G. Ives
	Boon Thau Loo
	Recommended Citation

	TAP: Time-Aware Provenance for Distributed Systems
	Abstract
	Disciplines
	Comments

	Introduction
	Background
	System Model
	Network Provenance

	Time-aware Provenance
	Provenance Maintenance
	Three approaches
	Tradeoffs

	Provenance Querying
	Querying Strategy
	Optimizations

	Secure Provenance Querying

