45 research outputs found
Use of gaming and simulation‐design technology in the formation of the readiness would‐be teachers of geography for specialized education of senior pupils
В статті здійснено аналіз використання імітаційноігрових і проектних технологій у
процесі професійнопедагогічної підготовки майбутніх учителів географії. Виявлено можливості та з’ясовано вплив означених технологій на процес формування готовності майбутніх учителів географії до профільного навчання старшокласників
Recommended from our members
Brief inhalation of nitric oxide increases resuscitation success and improves 7-day-survival after cardiac arrest in rats: a randomized controlled animal study
Introduction: Inhaled nitric oxide (iNO) improves outcomes when given post systemic ischemia/reperfusion injury. iNO given during cardiopulmonary resuscitation (CPR) may therefore improve return of spontaneous circulation (ROSC) rates and functional outcome after cardiac arrest (CA). Methods: Thirty male Sprague-Dawley rats were subjected to 10 minutes of CA and at least 3 minutes of CPR. Animals were randomized to receive either 0 (n = 10, Control), 20 (n = 10, 20 ppm), or 40 (n = 10, 40 ppm) ppm iNO during CPR until 30 minutes after ROSC. A neurological deficit score was assessed daily for seven days following the experiment. On day 7, brains, hearts, and blood were sampled for histological and biochemical evaluation. Results: During CPR, 20 ppm iNO significantly increased diastolic arterial pressure (Control: 57 ± 5.04 mmHg; 20 ppm: 71.57 ± 57.3 mmHg, p < 0.046) and decreased time to ROSC (Control: 842 ± 21 s; 20 ppm: 792 ± 5 s, (p = 0.02)). Thirty minutes following ROSC, 20 ppm iNO resulted in an increase in mean arterial pressure (Control: 83 ± 4 mmHg; 20 ppm: 98 ± 4 mmHg, p = 0.035), a less pronounced rise in lactate and inflammatory cytokine levels, and attenuated cardiac damage. Inhalation of NO at 20 ppm improved neurological outcomes in rats 2 to 7 days after CA and CPR. This translated into increases in 7 day survival (Control: 4; 20 ppm: 10; 40 ppm 6, (p ≤ 0.05 20 ppm vs Control and 40 ppm). Conclusions: Our study revealed that breathing NO during CPR markedly improved resuscitation success, 7-day neurological outcomes and survival in a rat model of VF-induced cardiac arrest and CPR. These results support the beneficial effects of NO inhalation after cardiac arrest and CPR
Evaluation of the cardioprotective potential of extracellular vesicles - a systematic review and meta-analysis
Abstract Cardiovascular diseases are the main cause of death worldwide, demanding new treatments and interventions. Recently, extracellular vesicles (EVs) came in focus as important carriers of protective molecules such as miRNAs and proteins which might contribute to e.g. improved cardiac function after myocardial infarction. EVs can be secreted from almost every cell type in the human body and can be transferred via the bloodstream in almost every compartment. To provide an all-encompassing overview of studies investigating these beneficial properties of EVs we performed a systematic review/meta-analysis of studies investigating the cardioprotective characteristics of EVs. Forty-three studies were investigated and catalogued according to the EV source. We provide an in-depth analysis of the purification method, size of the EVs, the conducted experiments to investigate the beneficial properties of EVs as well as the major effector molecule encapsulated in EVs mediating protection. This study provides evidence that EVs from different cell types and body fluids provide cardioprotection in different in vivo and in vitro studies. A meta-analysis was performed to estimate the underlying effect size. In conclusion, we demonstrated that EVs from different sources might serve as a promising tool for treating cardiovascular diseases in the future
Retrospective Analysis of Air Handling by Contemporary Oxygenators in the Setting of Cardiac Surgery
Comparison of Serum and Urine as Sources of miRNA Markers for the Detection of Ovarian Cancer
Ovarian cancer is the second most fatal gynecological cancer. Early detection, which could be achieved through widespread screening, has not yet had an impact on mortality. The aim of our pilot study was to investigate the expression of miRNAs analyzed by a human miRNA microarray chip in urine and serum of patients with ovarian cancer. We analyzed three serum and three urine samples from healthy donors and five serum and five urine samples from patients with ovarian cancer taken at first diagnosis, before any treatment. We selected the seven miRNAs with the highest expression fold change in the microarray chip (cancer vs. control) in urine and serum, for validation by qPCR. We were able to validate two of the seven miRNAs in serum. In contrast to these findings, we were able to validate all of the top seven miRNAs identified in urine using qPCR. The top seven miRNAs in urine identified by microarray chip showed significantly greater differences in expression between patients with ovarian cancer and healthy donors compared to serum. Based on our finding, we can suggest that urine as a biomaterial is more suitable than serum for miRNA profiling by microarray chip in the search for new biomarkers in ovarian cancer
IRAK2 Downregulation in Triple-Negative Breast Cancer Cells Decreases Cellular Growth In Vitro and Delays Tumour Progression in Murine Models
Breast cancer stem cells (BCSCs) are responsible for tumour recurrence and therapy resistance. We have established primary BCSC cultures from human tumours of triple-negative breast cancer (TNBC), a subgroup of breast cancer likely driven by BCSCs. Primary BCSCs produce xenografts that phenocopy the tumours of origin, making them an ideal model for studying breast cancer treatment options. In the TNBC cell line MDA-MB-468, we previously screened kinases whose depletion elicited a differentiation response, among which IRAK2 was identified. Because primary BCSCs are enriched in IRAK2, we wondered whether IRAK2 downregulation might affect cellular growth. IRAK2 was downregulated in primary BCSCs and MDA-MB-468 by lentiviral delivery of shRNA, causing a decrease in cellular proliferation and sphere-forming capacity. When orthotopically transplanted into immunocompromised mice, IRAK2 knockdown cells produced smaller xenografts than control cells. At the molecular level, IRAK2 downregulation reduced NF-κB and ERK phosphorylation, IL-6 and cyclin D1 expression, ERN1 signalling and autophagy in a cell line-dependent way. Overall, IRAK2 downregulation decreased cellular aggressive growth and pathways often exploited by cancer cells to endure stress; therefore, IRAK2 may be considered an interesting target to compromise TNBC progression