17,438 research outputs found

    Reduced branching processes with very heavy tails

    Full text link
    The reduced Markov branching process is a stochastic model for the genealogy of an unstructured biological population. Its limit behavior in the critical case is well studied for the Zolotarev-Slack regularity parameter α∈(0,1]\alpha\in(0,1]. We turn to the case of very heavy tailed reproduction distribution α=0\alpha=0 assuming Zubkov's regularity condition with parameter β∈(0,∞)\beta\in(0,\infty). Our main result gives a new asymptotic pattern for the reduced branching process conditioned on non-extinction during a long time interval.Comment: 15 pages, 1 figur

    ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

    Get PDF
    We introduce the C++ application and R package ranger. The software is a fast implementation of random forests for high dimensional data. Ensembles of classification, regression and survival trees are supported. We describe the implementation, provide examples, validate the package with a reference implementation, and compare runtime and memory usage with other implementations. The new software proves to scale best with the number of features, samples, trees, and features tried for splitting. Finally, we show that ranger is the fastest and most memory efficient implementation of random forests to analyze data on the scale of a genome-wide association study

    Computation of Λˉ\bar{\Lambda} and λ1\lambda_1 with Lattice QCD

    Full text link
    We pursue a new method, based on lattice QCD, for determining the quantities Λˉ\bar{\Lambda}, λ1\lambda_1, and λ2\lambda_2 of heavy-quark effective theory. We combine Monte Carlo data for the meson mass spectrum with perturbative calculations of the short-distance behavior, to extract Λˉ\bar{\Lambda} and λ1\lambda_1 from a formula from HQET. Taking into account uncertainties from fitting the mass dependence and from taking the continuum limit, we find Λˉ=0.68+0.02−0.12GeV\bar{\Lambda} = 0.68{+0.02}_{-0.12} \text{GeV} and λ1=−(0.45±0.12)GeV2\lambda_1 = -(0.45 \pm 0.12) \text{GeV}^2 in the quenched approximation.Comment: 7 pp, 4 figs (in v2 Fig. 4 now shows Ref. 13, as advertised); in v3 error in BLM scale is correcte

    Using Realistic MHD Simulations for Modeling and Interpretation of Quiet-Sun Observations with the Solar Dynamics Observatory Helioseismic and Magnetic Imager

    Full text link
    The solar atmosphere is extremely dynamic, and many important phenomena develop on small scales that are unresolved in observations with the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). For correct calibration and interpretation of the observations, it is very important to investigate the effects of small-scale structures and dynamics on the HMI observables, such as Doppler shift, continuum intensity, spectral line depth, and width. We use 3D radiative hydrodynamics simulations of the upper turbulent convective layer and the atmosphere of the Sun, and a spectro-polarimetric radiative transfer code to study observational characteristics of the Fe I 6173A line observed by HMI in quiet-Sun regions. We use the modeling results to investigate the sensitivity of the line Doppler shift to plasma velocity, and also sensitivities of the line parameters to plasma temperature and density, and determine effective line formation heights for observations of solar regions located at different distances from the disc center. These estimates are important for the interpretation of helioseismology measurements. In addition, we consider various center-to-limb effects, such as convective blue-shift, variations of helioseismic travel-times, and the 'concave' Sun effect, and show that the simulations can qualitatively reproduce the observed phenomena, indicating that these effects are related to a complex interaction of the solar dynamics and radiative transfer.Comment: 21 pages, 10 figures, accepted for publication in Ap

    On the coefficients of differentiated expansions of ultraspherical polynomials

    Get PDF
    A formula expressing the coefficients of an expression of ultraspherical polynomials which has been differentiated an arbitrary number of times in terms of the coefficients of the original expansion is proved. The particular examples of Chebyshev and Legendre polynomials are considered
    • …
    corecore