61 research outputs found

    Production and use of 13N labeled N2O5 to determine gas-aerosol interaction kinetics

    Get PDF
    Dinitrogen pentoxide has aroused significant interest in atmospheric chemistry because of its importance in the night time chemistry of nitrogen oxides to influence the tropospheric oxidation capacity. We have used an established method of 13N production to synthesize 13N labeled N2O5 for the first time in order to study N2O5 uptake kinetics on aerosol particles. 13N is produced via the 16O(p, α)13N reaction in a gas target attached to the IP2 endstation of the Injector 2 cyclotron at PSI. The 13NO produced in the gas target is transported to a laboratory where it is mixed, under dry conditions, with non-labeled NO and O3 in a gas reactor, giving 13NNO5. The N2O5 thus produced is fed into an aerosol flow tube together with a humidified aerosol gas flow. The gaseous species present in the resulting gas flow are selectively separated via a narrow parallel plate diffusion denuder system, while aerosol particles can be trapped on a particle filter placed at the end of the denuder system. The activity of the 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. A system for the routine online production of 13N labeled N2O5 has been assembled and used to assess the conformity of the results by kinetic modeling of gas phase N2O5 chemistry, showing good agreement. A few exemplary experiments of uptake of labelled N2O5 to ammonium sulfate and citric acid particles are presented that are in good agreement with results obtained with other methods reported in the literatur

    Combining staged laparoscopic colectomy with robotic completion proctectomy and ileal pouch-anal anastomosis (IPAA) in ulcerative colitis for improved clinical and cosmetic outcomes: a single-center feasibility study and technical description

    Full text link
    Robotic proctectomy has been shown to lead to better functional outcomes compared to laparoscopic surgery in rectal cancer. However, in ulcerative colitis (UC), the potential value of robotic proctectomy has not yet been investigated, and in this indication, the operation needs to be adjusted to the total colectomy typically performed in the preceding 6 months. In this study, we describe the technique and analyze outcomes of a staged laparoscopic and robotic three-stage restorative proctocolectomy and compare the clinical outcome with the classical laparoscopic procedure. Between December 2016 and May 2021, 17 patients underwent robotic completion proctectomy (CP) with ileal pouch-anal anastomosis (IPAA) for UC. These patients were compared to 10 patients who underwent laparoscopic CP and IPAA, following laparoscopic total colectomy with end ileostomy 6 months prior by the same surgical team at our tertiary referral center. 27 patients underwent a 3-stage procedure for refractory UC (10 in the lap. group vs. 17 in the robot group). Return to normal bowel function and morbidity were comparable between the two groups. Median length of hospital stay was the same for the robotic proctectomy/IPAA group with 7 days [median; IQR (6-10)], compared to the laparoscopic stage II with 7.5 days [median; IQR (6.25-8)]. Median time to soft diet was 2 days [IQR (1-3)] vs. 3 days in the lap group [IQR 3 (3-4)]. Two patients suffered from a major complication (Clavien-Dindo ≥ 3a) in the first 90 postoperative days in the robotic group vs. one in the laparoscopic group. Perception of cosmetic results were favorable with 100% of patients reporting to be highly satisfied or satisfied in the robotic group. This report demonstrates the feasibility of a combined laparoscopic and robotic staged restorative proctocolectomy for UC, when compared with the traditional approach. Robotic pelvic dissection and a revised trocar placement in staged proctocolectomy with synergistic use of both surgical techniques with their individual advantages will likely improve overall long-term functional results, including an improved cosmetic outcome

    The American Astronomical Society, find out more The Institute of Physics, find out more Where Do Quasar Hosts Lie with Respect to the Size–Mass Relation of Galaxies?

    Get PDF
    The evolution of the galaxy size–mass relation has been a puzzle for over a decade. High-redshift galaxies are significantly more compact than galaxies observed today at an equivalent mass, but how much of this apparent growth is driven by progenitor bias, minor mergers, secular processes, or feedback from active galactic nuclei (AGNs) is unclear. To help disentangle the physical mechanisms at work by addressing the latter, we study the size–Mstellar relation of 32 carefully selected broad-line AGN hosts at 1.2 \u3c z \u3c 1.7 (7.5 \u3c log MBH \u3c 8.5; Lbol/LEdd ≳ 0.1). Using the Hubble Space Telescope with multiband photometry and state-of-the-art modeling techniques, we measure half-light radii while accounting for uncertainties from subtracting bright central point sources. We find AGN hosts to have sizes ranging from ∼1 to 6 kpc at Mstellar ∼ (0.3–1) × 1011 M⊙. Thus, many hosts have intermediate sizes as compared to equal-mass star-forming and quiescent galaxies. While inconsistent with the idea that AGN feedback may induce an increase in galaxy sizes, this finding is consistent with hypotheses in which AGNs preferentially occur in systems with prior concentrated gas reservoirs, or are involved in a secular compaction processes perhaps responsible for building their bulges. If driven by minor mergers that do not grow central black holes as fast as they do bulge-like stellar structures, such a process would explain both the galaxy size–mass relation observed here and the evolution in the black hole–bulge mass relation described in a companion paper

    Improvement of antibiotic prescription in outpatient care: a cluster-randomized intervention study using a sentinel surveillance network of physicians

    Get PDF
    Objectives To assess the effectiveness of implementing guidelines, coupled with individual feedback, on antibiotic prescribing behaviour of primary care physicians in Switzerland. Methods One hundred and forty general practices from a representative Swiss sentinel network of primary care physicians participated in this cluster-randomized prospective intervention study. The intervention consisted of providing guidelines on treatment of respiratory tract infections (RTIs) and uncomplicated lower urinary tract infections (UTIs), coupled with sustained, regular feedback on individual antibiotic prescription behaviour during 2 years. The main aims were: (i) to increase the percentage of prescriptions of penicillins for all RTIs treated with antibiotics; (ii) to increase the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics; (iii) to decrease the percentage of quinolone prescriptions for all cases of exacerbated COPD (eCOPD) treated with antibiotics; and (iv) to decrease the proportion of sinusitis and other upper RTIs treated with antibiotics. The study was registered at ClinicalTrials.gov (NCT01358916). Results While the percentage of antibiotics prescribed for sinusitis or other upper RTIs and the percentage of quinolones prescribed for eCOPD did not differ between the intervention group and the control group, there was a significant increase in the percentage of prescriptions of penicillins for all RTIs treated with antibiotics [57% versus 49%, OR = 1.42 (95% CI 1.08-1.89), P = 0.01] and in the percentage of trimethoprim/sulfamethoxazole prescriptions for all uncomplicated lower UTIs treated with antibiotics [35% versus 19%, OR = 2.16 (95% CI 1.19-3.91), P = 0.01] in the intervention group. Conclusions In our setting, implementing guidelines, coupled with sustained individual feedback, was not able to reduce the proportion of sinusitis and other upper RTIs treated with antibiotics, but increased the use of recommended antibiotics for RTIs and UTIs, as defined by the guideline

    The Mass Relations between Supermassive Black Holes and Their Host Galaxies at 1 \u3c z \u3c 2 with \u3cem\u3eHST\u3c/em\u3e-WFC3

    Get PDF
    Correlations between the mass of a supermassive black hole (SMBH) and the properties of its host galaxy (e.g., total stellar mass M*, luminosity Lhost) suggest an evolutionary connection. A powerful test of a coevolution scenario is to measure the relations –Lhost and –M* at high redshift and compare with local estimates. For this purpose, we acquired Hubble Space Telescope (HST) imaging with WFC3 of 32 X-ray-selected broad-line (type 1) active galactic nuclei at 1.2 \u3c z \u3c 1.7 in deep survey fields. By applying state-of-the-art tools to decompose the HST images including available ACS data, we measured the host galaxy luminosity and stellar mass along with other properties through the two-dimensional model fitting. The black hole mass () was determined using the broad Hα line, detected in the near-infrared with the Subaru Fiber Multi-Object Spectrograph, which potentially minimizes systematic effects using other indicators. We find that the observed ratio of to total M* is 2.7× larger at z ∼ 1.5 than in the local universe, while the scatter is equivalent between the two epochs. A nonevolving mass ratio is consistent with the data at the 2σ–3σ confidence level when accounting for selection effects (estimated using two independent and complementary methods) and their uncertainties. The relationship between and host galaxy total luminosity paints a similar picture. Therefore, our results cannot distinguish whether SMBHs and their total host stellar mass and luminosity proceed in lockstep or whether the growth of the former somewhat overshoots the latter, given the uncertainties. Based on a statistical estimate of the bulge-to-total mass fraction, the ratio /M*,bulge is offset from the local value by a factor of ∼7, which is significant even accounting for selection effects. Taken together, these observations are consistent with a scenario in which stellar mass is subsequently transferred from an angular momentum–supported component of the galaxy to a pressure-supported one through secular processes or minor mergers at a faster rate than mass accretion onto the SMBH

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    • …
    corecore