484 research outputs found

    Characterization of Terrestrial Water Dynamics in the Congo Basin Using GRACE and Satellite Radar Altimetry

    Get PDF
    The Congo Basin is the world's third largest in size (approx.3.7 million sq km), and second only to the Amazon River in discharge (approx.40,200 cu m/s annual average). However, the hydrological dynamics of seasonally flooded wetlands and floodplains remains poorly quantified. Here, we separate the Congo wetland into four 3deg 3deg regions, and use remote sensing measurements (i.e., GRACE, satellite radar altimeter, GPCP, JERS-1, SRTM, and MODIS) to estimate the amounts of water filling and draining from the Congo wetland, and to determine the source of the water. We find that the amount of water annually filling and draining the Congo wetlands is 111 cu km, which is about one-third the size of the water volumes found on the mainstem Amazon floodplain. Based on amplitude comparisons among the water volume changes and timing comparisons among their fluxes, we conclude that the local upland runoff is the main source of the Congo wetland water, not the fluvial process of river-floodplain water exchange as in the Amazon. Our hydraulic analysis using altimeter measurements also supports our conclusion by demonstrating that water surface elevations in the wetlands are consistently higher than the adjacent river water levels. Our research highlights differences in the hydrology and hydrodynamics between the Congo wetland and the mainstem Amazon floodplain

    Critical Analysis of Theoretical Estimates for BB to Light Meson Form Factors and the BψK(K)B \to \psi K(K^{\ast}) Data

    Full text link
    We point out that current estimates of form factors fail to explain the non-leptonic decays BψK(K)B \to \psi K(K^{\ast}) and that the combination of data on the semi-leptonic decays DK(K)νD \to K(K^{\ast})\ell \nu and on the non-leptonic decays BψK(K)B \to \psi K(K^{\ast}) (in particular recent po\-la\-ri\-za\-tion data) severely constrain the form (normalization and q2q^2 dependence) of the heavy-to-light meson form factors, if we assume the factorization hypothesis for the latter. From a simultaneous fit to \bpsi and \dk data we find that strict heavy quark limit scaling laws do not hold when going from DD to BB and must have large corrections that make softer the dependence on the masses. We find that A1(q2)A_1(q^2) should increase slower with \qq than A2,V,f+A_2, V, f_+. We propose a simple parametrization of these corrections based on a quark model or on an extension of the \hhs laws to the \hl case, complemented with an approximately constant A1(q2)A_1(q^2). We analyze in the light of these data and theoretical input various theoretical approaches (lattice calculations, QCD sum rules, quark models) and point out the origin of the difficulties encountered by most of these schemes. In particular we check the compatibility of several quark models with the heavy quark scaling relations.Comment: 48 pages, DAPNIA/SPP/94-24, LPTHE-Orsay 94/1

    Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed

    Get PDF
    Remote sensing has gained attention as a novel source of primary information for estimating river discharge, and the Mass-conserved Flow Law Inversion (McFLI) approach has successfully estimated river discharge in ungauged basins solely from optical satellite data. However, McFLI currently suffers from two major drawbacks: (1) existing optical satellites lead to temporally and spatially sparse discharge estimates and (2) because of the assumptions required, McFLI cannot guarantee downstream flow continuity. Hydrological modeling has neither drawback, yet model accuracy is frequently limited by a lack of discharge observations. We therefore combine McFLI and models in a data assimilation framework applicable globally. We establish a daily “ungauged” baseline model for 28,998 reaches of the Missouri river basin forced by recently published global runoff data, which we do not calibrate. We estimate discharge via McFLI using ∼1 million width measurements made from 12,000 Landsat scenes and assimilate McFLI into the model before validating at 403 USGS gauges. Results show that assimilated discharges did not impair already accurate baseline flows and achieved median improvements of 28% normalized root mean square error, 0.50 Nash–Sutcliffe efficiency (NSE), and 0.23 Kling–Gupta efficiency where baseline performance was poor (defined as baseline negative NSE, 225/403 reaches). We ultimately improved flows at 92% of these originally poorly modeled gauges, even though Landsat images only provide McFLI discharges at 1.5% of reaches and 26% of simulated days. Our results suggest that the combination of McFLI and state-of-the-art hydrology models can improve flow estimations in ungauged basins globally

    Generation of representative primary virus isolates from blood plasma after isolation of HIV-1 with CD44 MicroBeads

    Get PDF
    Infection of cell cultures with cell-free virus isolated from HIV-infected patients is notoriously difficult and results in a loss of viral variation. Here, we describe viral sequences from PBMC, U87.CD4.CCR5 and U87.CD4.CXCR4 cell cultures and compare them to those from blood plasma from 12 patients from whom virus particles were isolated using CD44 MicroBeads. In both PBMC and U87.CD4.CCR5 cultures, 66% of the plasma viral strains were retrieved after culturing. In addition, coreceptor use was predicted based on the env-V3 sequence and tested in U87.CD4 cells expressing either CCR5 or CXCR4. Recovery was lower for the CXCR4-using viruses. Only 50% of the virus clusters predicted to use CXCR4 could be retrieved from cell cultures, while 71% of CCR5-using strains were found in U87.CCR5 cultures. Therefore, isolation of primary viruses with CD44 MicroBeads results in a good representation in cell culture of the in vivo divergence

    Nucleon to Delta Weak Excitation Amplitudes in the Non-relativistic Quark Model

    Full text link
    We investigate the nucleon to Delta(1232) vector and axial vector amplitudes in the non-relativistic quark model of the Isgur-Karl variety. A particular interest is to investigate the SU(6) symmetry breaking, due to color hyperfine interaction. We compare the theoretical estimates to recent experimental investigation of the Adler amplitudes by neutrino scattering.Comment: \documentstyle[aps]{revtex}, 21pages; 11 postscript figures. Accepted for publication by Phys. Rev.

    Fibrous polymeric buccal film formulation, engineering and bio-interface assessment

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Polymer based dosages form the mainstay of drug delivery systems either as simple matrix carrier materials or active release behavior modulating agents. In addition, several techniques have been developed further to deliver novel polymeric structures. One such method is electrospinning (ES); a maturing process which is operational at the ambient environment and enables drug loading (in molecularly dispersed form) directly into a fibrous polymer matrix system. Since there is an impending need to address healthcare challenges arising from an increase in the aging population (requiring enhanced treatments), the ES method was used to develop fibrous polymer composite-indomethacin (INDO) films for potential use in the buccal region. Films were assessed for their inter-facial behavior at bio-interfaces (in-vitro and ex-vivo). Polymeric excipients possessing an established profile for commercial dosage form development were selected. Fibrous films (all fibre components <400 nm) were characterised using DSC, TGA, FTIR, Raman and XRD. DSC and XRD demonstrated INDO change from crystalline to amorphous state. FTIR and Raman data suggest INDO, PVP and co-polymers (Methocel™ E5, Methocel™ E15 and Tween® 80) were integrated in stable fashion into filamentous structures via ES. Variable INDO release behavior from several matrices was observed suggesting a potential route to tailor drug release based on polymeric excipient use and ratio. Furthermore, permeation studies using a porcine buccal model demonstrated sustained permeation once dosages are attached to the buccal mucosa. The insoluble nature of cellulose excipients were used to promote sustained release while the use of Tween® 80 surfactant was used to enhance permeation of INDO through polymer interaction with excised tissue. Finally, histology studies indicate polymer excipient selection impacts the bio-interface. In summary, a facile approach to formulate, encapsulate and engineer fibrous polymeric buccal films (on demand) is shown. The method enables drug dispersion directly within the composite polymeric system, which has a clear impact on drug release, in-vitro and ex-vivo bio-interaction

    Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo

    Get PDF
    Neural crest (NC) cells are multipotent stem cells that arise from the embryonic ectoderm, delaminate from the neural tube in early vertebrate development and migrate throughout the developing embryo, where they differentiate into various cell lineages. Here we show that multipotent and functional NC cells can be derived by induction with a growth factor cocktail containing FGF2 and IGF1 from cultures of human inter-follicular keratinocytes (KC) isolated from elderly donors. Adult NC cells exhibited longer doubling times as compared to neonatal NC cells, but showed limited signs of cellular senescence despite the advanced age of the donors and exhibited significantly younger epigenetic age as compared to KC. They also maintained their multipotency, as evidenced by their ability to differentiate into all NC-specific lineages including neurons, Schwann cells, melanocytes, and smooth muscle cells (SMC). Notably, upon implantation into chick embryos, adult NC cells behaved similar to their embryonic counterparts, migrated along stereotypical pathways and contributed to multiple NC derivatives in ovo. These results suggest that KC-derived NC cells may provide an easily accessible, autologous source of stem cells that can be used for treatment of neurodegenerative diseases or as a model system for studying disease pathophysiology and drug development
    corecore