55 research outputs found

    "We are the rug hooking capital of the world": understanding Chéticamp rugs (1927-2017)

    Get PDF
    This thesis is the story of how utilitarian material culture was transformed into a cottage industry, and eventually into high art. Chéticamp rug hooking is an artistic practice, one wrapped up in issues of taste, creativity, class and economics. Rug hooking in Chéticamp rose to prominence in the first half of the 20th century when Lillian Burke, a visiting American artist, set up a rug hooking cottage industry in the area. She altered the tradition to suit the tastes of wealthy patrons, who began buying the rugs to outfit their homes. This thesis examines design in rug hooking focusing on Chéticamp-style rugs. Captured within design aesthetics is what the rugs mean to both those who make and consume them. For tourists, the rugs are symbols of a perceived anti-modernism. Through the purchase of a hooked rug, they are able to bring home material reminders of their moment of experience with rural Nova Scotia. For rug hookers, rugs are a symbol of economic need, but also agency and the ability to overcome depressed rural economic conditions. Rug hooking was a way to have a reliable income in an area where much of the labour is dependent on unstable sources, such as natural resources (fishing, lumber, agriculture etc.). This also meant that rug hooking is closely tied to notions of poverty. The motif-index developed for this thesis by examining several hundred hooked rugs demonstrates that consistent structural elements such as motifs are dependent on context. When used in a comparative manner, it also helps illustrate how often those creating hooked rug designs, whether they were sold commercially as patterns or designs to be used as part of a cottage industry, were sharing and borrowing design ideas throughout North America. The motif-index is a typology and a tool that enables discussion by standardizing language and terminology which allows for comparative examination of hooked rugs from across a variety of traditions

    Improving tuberculosis surveillance by detecting international transmission using publicly available whole genome sequencing data

    Get PDF
    Improving the surveillance of tuberculosis (TB) is one of the eight core activities identified by the World Health Organization (WHO) and the European Respiratory Society to achieve TB elimination, defined as less than one incident case per million [1]. Monitoring transmission is especially important for multidrug-resistant (MDR) Mycobacterium tuberculosis isolates – defined as being resistant to rifampicin and isoniazid – and for extensively drug-resistant (XDR) M. tuberculosis isolates – defined as MDR isolates with additional resistance to at least one of the fluoroquinolones and at least one of the second-line injectable drugs. In 2017, the WHO estimated that worldwide more than 450,000 people fell ill with MDR-TB and among these, more than 38,000 fell ill with XDR-TB [2]. The rapid advance in molecular typing technology – especially the availability of whole genome sequencing (WGS) to identify and characterise pathogens – gives us the chance to integrate this information into disease surveillance. For TB surveillance, it is possible to combine the results of molecular typing of isolates from the M. tuberculosis complex with traditional epidemiological information to infer or to exclude TB transmission [3,4]. This is of particular relevance if transmission occurs among multiple countries, where epidemiological data such as social contacts are more difficult to get and where data exchange is more difficult to organise. The European Centre for Disease Prevention and Control (ECDC) reported 44 events of international transmission (international clusters) of MDR-TB in different European countries between 2012 and 2015 [5]. In that report, the authors inferred TB transmission using the mycobacterial interspersed repetitive units variable number of tandem repeats (MIRU-VNTR) typing method. However, this method has limitations such as low correlation with epidemiological information in outbreak settings and low discriminatory power [3,6]. In comparison, WGS analysis offers a much higher discriminatory power and allows inferring (or excluding) TB transmission at a higher resolution [4]. In a recent systematic review, van der Werf et al. identified three studies that used WGS to investigate the international transmission of TB [7]. In recent years, the amount of available WGS data is increasing, especially because sequencing has become cheaper [8]. In addition, more and more authors deposit the raw data of their projects in open access public repositories such as the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) [9]. These publicly available raw WGS data for thousands of isolates enable the re-use and the additional analyses at a large and global scale [10]. For example, it is possible to compare genomic data among different studies or countries since the data are available in a single place. Moreover, new software tools can be tested using the same raw WGS data [11]. However, standards in bioinformatics analysis and interpretation of these WGS data for surveillance purposes are not yet fully established [12]. We aimed to assess the usefulness of raw WGS data of global MDR/XDR M. tuberculosis isolates available in public repositories to improve TB surveillance. Specifically, we wanted to identify potential international events of TB transmission and to compare the international isolates with a collection of M. tuberculosis isolates collected in Germany in 2012 and 2013.Peer Reviewe

    Livestock-associated methicillin-resistant Staphylococcus aureus responsible for human colonization and infection in an area of Italy with high density of pig farming

    Get PDF
    BACKGROUND: Livestock-Associated MRSA (LA-MRSA) belonging to ST398 lineage, common among pigs and other animals, emerged in Central and Northern Europe, becoming a new risk factor for MRSA among farm workers. Strains belonging to ST398 can be responsible for human colonization and infection, mainly in areas with high livestock-farming. The aim of this study was to investigate the occurrence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) human colonization and infections in an area of the Lombardy Region (Italy), the Italian region with the highest density of pig farming. METHODS: In the period March-April 2010, 879 nasal swabs were taken from subjects at admission to a local hospital serving an area of the Lombardy Region devoted to agriculture and farming. In the period March 2010-February 2011, all MRSA strains from community-acquired infection (CAI) observed in the same hospital, were collected. Molecular characterization of the isolates included SCCmec typing, spa typing and multilocus sequence typing (MLST). RESULTS: Out of 879 nasal swabs examined, 9 (1%) yielded MRSA. Five strains were assigned to sequence type (ST)398 (spa t899, 3 isolates; t108 and t2922, 1 isolate each) and were therefore categorized as LA-MRSA. The other 4 isolates were likely of hospital origin. No strains were positive for Panton-Valentine Leukocidin genes. Twenty MRSA isolates were detected from CAI, 17 were from skin and soft-tissue infections and 3 from other infections. An MRSA isolate from otitis externa was t899/ST398 and PVL-negative, hence categorized as LA-MRSA. Four isolates were assigned to t127/ST1. Eight strains were PVL-positive community acquired (CA)-MRSA and belonged to different clones, the most frequent being ST8. CONCLUSIONS: In an area of Italy with high density of pig farming, LA-MRSA is able to colonize the population and rarely to produce infections. Typical CA-MRSA is more common than LA-MRSA among CAI

    Recent Developments in Phenotypic and Molecular Diagnostic Methods for Antimicrobial Resistance Detection in Staphylococcus aureus: A Narrative Review

    No full text
    Staphylococcus aureus is an opportunistic pathogen responsible for a wide range of infections in humans, such as skin and soft tissue infections, pneumonia, food poisoning or sepsis. Historically, S. aureus was able to rapidly adapt to anti-staphylococcal antibiotics and become resistant to several classes of antibiotics. Today, methicillin-resistant S. aureus (MRSA) is a multidrug-resistant pathogen and is one of the most common bacteria responsible for hospital-acquired infections and outbreaks, in community settings as well. The rapid and accurate diagnosis of antimicrobial resistance in S. aureus is crucial to the early initiation of directed antibiotic therapy and to improve clinical outcomes for patients. In this narrative review, I provide an overview of recent phenotypic and molecular diagnostic methods for antimicrobial resistance detection in S. aureus, with a particular focus on MRSA detection. I consider methods for resistance detection in both clinical samples and isolated S. aureus cultures, along with a brief discussion of the advantages and the challenges of implementing such methods in routine diagnostics
    corecore