22 research outputs found

    Impact of rising body weight and cereal grain food processing on human magnesium nutrition

    Get PDF
    AimThe World Health Organisation (WHO) magnesium (Mg) estimated average requirement (EAR) is not adjusted for rise in human body weight (BW) and neglects body Mg stores depletion. Cereal grain food processing results in Mg loss and reduces dietary Mg intake which mainly originates from cereals. Here we reassess human dietary Mg deficiency risk considering actual human BWs and modern levels of cereal grain food processing.MethodsHuman Mg requirement was adjusted for rising BW plus low and high estimates to prevent body Mg store depletion. Magnesium supply was recalculated for cereal grain (maize, millet, rice, oats, sorghum, and wheat) food processing of none, 25%, 50%, 75% and 100%. Resulting Mg deficiency risks in 1992 and 2011 were calculated at national, regional, continental and global scales using the EAR cut-point method.ResultsGlobally, human Mg requirement increased by 4–118% under the three Mg requirement scenarios compared to the WHO EARs set in 1998. However, dietary Mg supply declined with increased cereal grain food processing. At 100% cereal grain processing, dietary Mg supply was reduced by 56% in 1992 and 51% in 2011. Global human Mg deficiency risk reached 62% in 2011 with 100% cereal grain processing and largest EAR set to prevent depletion of body Mg stores and corrected for BW rises.ConclusionGlobal dietary Mg Supply adequately meets human Mg requirement given the global obesity epidemic. But, Mg intakes preventing body Mg store depletion plus high Mg losses due to cereal grain food processing start to show noteworthy risks of potential Mg deficit in populations consuming diets with >50% cereal grain food processing. These findings have ramifications for the global spread of the major chronic, non-communicable diseases associated with nutritional Mg deficiencies such as cardiovascular diseases and type 2 diabete

    Changing crop magnesium concentrations: impact on human health

    Get PDF
    Abstract Aims Decreasing mineral concentrations in high-yield grains of the Green Revolution have coincided in time with rising global cardiovascular disease (CVD) mortality rates. Given the Magnesium (Mg) Hypothesis of CVD, it's important to assess any changes in food crop Mg concentrations over the past 50+ years

    Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials

    Get PDF
    The antihypertensive effect of magnesium (Mg) supplementation remains controversial. We aimed to quantify the effect of oral Mg supplementation on blood pressure (BP) by synthesizing available evidence from randomized, double-blind, placebo-controlled trials. We searched trials of Mg supplementation on normotensive and hypertensive adults published up to February 1, 2016 from MEDLINE and EMBASE databases; 34 trials involving 2028 participants were eligible for this meta-analysis. Weighted mean differences of changes in BP and serum Mg were calculated by random-effects meta-analysis. Mg supplementation at a median dose of 368 mg/d for a median duration of 3 months significantly reduced systolic BP by 2.00 mm Hg (95% confidence interval, 0.43–3.58) and diastolic BP by 1.78 mm Hg (95% confidence interval, 0.73–2.82); these reductions were accompanied by 0.05 mmol/L (95% confidence interval, 0.03, 0.07) elevation of serum Mg compared with placebo. Using a restricted cubic spline curve, we found that Mg supplementation with a dose of 300 mg/d or duration of 1 month is sufficient to elevate serum Mg and reduce BP; and serum Mg was negatively associated with diastolic BP but not systolic BP (all P<0.05). In the stratified analyses, a greater reduction in BP tended to be found in trials with high quality or low dropout rate (all P values for interaction <0.05). However, residual heterogeneity may still exist after considering these possible factors. Our findings indicate a causal effect of Mg supplementation on lowering BPs in adults. Further well-designed trials are warranted to validate the BP-lowering efficacy of optimal Mg treatment

    The Circulating Concentration and 24-h Urine Excretion of Magnesium Dose- and Time-Dependently Respond to Oral Magnesium Supplementation in a Meta-Analysis of Randomized Controlled Trials

    Get PDF
    Background: Accurate determination of Mg status is important for improving nutritional assessment and clinical risk stratification. Objective: We aimed to quantify the overall responsiveness of Mg biomarkers to oral Mg supplementation among adults without severe diseases and their dose- and time responses using available data from randomized controlled trials (RCTs). Methods: We identified 48 Mg supplementation trials (n = 2131) through searches of MEDLINE and the Cochrane Library up to November 2014. Random-effects meta-analysis was used to estimate weighted mean differences of biomarker concentrations between intervention and placebo groups. Restricted cubic splines were used to determine the dose- and time responses of Mg biomarkers to supplementation. Results: Among the 35 biomarkers assessed, serum, plasma, and urine Mg were most commonly measured. Elemental Mg supplementation doses ranged from 197 to 994 mg/d. Trials ranged from 3 wk to 5 y (median: 12 wk). Mg supplementation significantly elevated circulating Mg by 0.04 mmol/L (95% CI: 0.02, 0.06) and 24-h urine Mg excretion by 1.52 mmol/24 h (95% CI: 1.20, 1.83) as compared to placebo. Circulating Mg concentrations and 24-h urine Mg excretion responded to Mg supplementation in a dose- and time-dependent manner, gradually reaching a steady state at doses of 300 mg/d and 400 mg/d, or after ~20 wk and 40 wk, respectively (all P-nonlinearity ≤ 0.001). The higher the circulating Mg concentration at baseline, the lower the responsiveness of circulating Mg to supplementation, and the higher the urinary excretion (all P-linearity < 0.05). In addition, RBC Mg, fecal Mg, and urine calcium were significantly more elevated by Mg supplementation than by placebo (all P-values < 0.05), but there is insufficient evidence to determine their responses to increasing Mg doses. Conclusions: This meta-analysis of RCTs demonstrated significant dose- and time responses of circulating Mg concentration and 24-h urine Mg excretion to oral Mg supplementation

    Effect of Transdermal Magnesium Cream on Serum and Urinary Magnesium Levels in Humans: A Pilot Study

    Get PDF
    © 2017 Kass et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background Oral magnesium supplementation is commonly used to support a low magnesium diet. This investigation set out to determine whether magnesium in a cream could be absorbed transdermally in humans to improve magnesium status. Methods and findings In this single blind, parallel designed pilot study, n=25 participants (aged 34.3+/-14.8y, height 171.5+/-11cm, weight 75.9 +/-14 Kg) were randomly assigned to either a 56mg/day magnesium cream or placebo cream group for two weeks. Magnesium serum and 24hour urinary excretion were measured at baseline and at 14 days intervention. Food diaries were recorded for 8 days during this period. Mg test and placebo groups’ serum and urinary Mg did not differ at baseline. After the Mg2+ cream intervention there was a clinically relevant increase in serum magnesium (0.82 to 0.89 mmol/l,p=0.29) that was not seen in the placebo group (0.77 to 0.79 mmol/L), but was only statistically significant (p=0.02)) in a subgroup of non-athletes . Magnesium urinary excretion increased from baseline slightly in the Mg2+ group but with no statistical significance (p=0.48). The Mg2+ group showed an 8.54% increase in serum Mg2+ and a 9.1% increase in urinary Mg2+ while these figures for the placebo group were smaller, i.e. +2.6% for serum Mg2+ and -32% for urinary Mg2+. In the placebo group, both serum and urine concentrations showed no statistically significant change after the application of the placebo cream. Conclusion No previous studies have looked at transdermal absorbency of Mg2+ in human subjects. In this pilot study, transdermal delivery of 56 mg Mg/day (a low dose compared with commercial transdermal Mg2+ products available) showed a larger percentage rise in both serum and urinary markers from pre to post intervention compared with subjects using the placebo cream, but statistical significance was achieved only for serum Mg2+ in a subgroup of non-athletes. Future studies should look at higher dosage of magnesium cream for longer durations.Peer reviewe

    Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials

    No full text
    Trials and meta-analyses of oral magnesium for hypertension show promising but conflicting results. An inclusive collection of 49 oral magnesium for blood pressure (BP) trials were categorized into four groups: (1) Untreated Hypertensives; (2) Uncontrolled Hypertensives; (3) Controlled Hypertensives; (4) Normotensive subjects. Each group was tabulated by ascending magnesium dose. Studies reporting statistically significant (p 600 mg/day; 600 mg/day). Where magnesium did not lower BP, other cardiovascular risk factors showed improvement. Conclusion: Controlled Hypertensives and Normotensives do not show a BP-lowering effect with oral Mg therapy, but oral magnesium (≥240 mg/day) safely lowers BP in Uncontrolled Hypertensive patients taking antihypertensive medications, while >600 mg/day magnesium is required to safely lower BP in Untreated Hypertensives; <600 mg/day for non-medicated hypertensives may not lower both SBP and DBP but may safely achieve other risk factor improvements without antihypertensive medication side effects

    Effectively Prescribing Oral Magnesium Therapy for Hypertension: A Categorized Systematic Review of 49 Clinical Trials

    No full text
    Trials and meta-analyses of oral magnesium for hypertension show promising but conflicting results. An inclusive collection of 49 oral magnesium for blood pressure (BP) trials were categorized into four groups: (1) Untreated Hypertensives; (2) Uncontrolled Hypertensives; (3) Controlled Hypertensives; (4) Normotensive subjects. Each group was tabulated by ascending magnesium dose. Studies reporting statistically significant (p &lt; 0.05) decreases in both systolic BP (SBP) and diastolic BP (DBP) from both baseline and placebo (if reported) were labeled &ldquo;Decrease&rdquo;; all others were deemed &ldquo;No Change.&rdquo; Results: Studies of Untreated Hypertensives (20 studies) showed BP &ldquo;Decrease&rdquo; only when Mg dose was &gt;600 mg/day; &lt;50% of the studies at 120&ndash;486 mg Mg/day showed SBP or DBP decreases but not both while others at this Mg dosage showed no change in either BP measure. In contrast, all magnesium doses (240&ndash;607 mg/day) showed &ldquo;Decrease&rdquo; in 10 studies on Uncontrolled Hypertensives. Controlled Hypertensives, Normotensives and &ldquo;magnesium-replete&rdquo; studies showed &ldquo;No Change&rdquo; even at high magnesium doses (&gt;600 mg/day). Where magnesium did not lower BP, other cardiovascular risk factors showed improvement. Conclusion: Controlled Hypertensives and Normotensives do not show a BP-lowering effect with oral Mg therapy, but oral magnesium (&ge;240 mg/day) safely lowers BP in Uncontrolled Hypertensive patients taking antihypertensive medications, while &gt;600 mg/day magnesium is required to safely lower BP in Untreated Hypertensives; &lt;600 mg/day for non-medicated hypertensives may not lower both SBP and DBP but may safely achieve other risk factor improvements without antihypertensive medication side effects
    corecore