414 research outputs found

    Rational Fair Consensus in the GOSSIP Model

    Full text link
    The \emph{rational fair consensus problem} can be informally defined as follows. Consider a network of nn (selfish) \emph{rational agents}, each of them initially supporting a \emph{color} chosen from a finite set Σ \Sigma. The goal is to design a protocol that leads the network to a stable monochromatic configuration (i.e. a consensus) such that the probability that the winning color is cc is equal to the fraction of the agents that initially support cc, for any c∈Σc \in \Sigma. Furthermore, this fairness property must be guaranteed (with high probability) even in presence of any fixed \emph{coalition} of rational agents that may deviate from the protocol in order to increase the winning probability of their supported colors. A protocol having this property, in presence of coalitions of size at most tt, is said to be a \emph{whp\,-tt-strong equilibrium}. We investigate, for the first time, the rational fair consensus problem in the GOSSIP communication model where, at every round, every agent can actively contact at most one neighbor via a \emph{push//pull} operation. We provide a randomized GOSSIP protocol that, starting from any initial color configuration of the complete graph, achieves rational fair consensus within O(log⁥n)O(\log n) rounds using messages of O(log⁥2n)O(\log^2n) size, w.h.p. More in details, we prove that our protocol is a whp\,-tt-strong equilibrium for any t=o(n/log⁥n)t = o(n/\log n) and, moreover, it tolerates worst-case permanent faults provided that the number of non-faulty agents is Ω(n)\Omega(n). As far as we know, our protocol is the first solution which avoids any all-to-all communication, thus resulting in o(n2)o(n^2) message complexity.Comment: Accepted at IPDPS'1

    Fuzzy Clustering Using the Convex Hull as Geometrical Model

    Get PDF
    A new approach to fuzzy clustering is proposed in this paper. It aims to relax some constraints imposed by known algorithms using a generalized geometrical model for clusters that is based on the convex hull computation. A method is also proposed in order to determine suitable membership functions and hence to represent fuzzy clusters based on the adopted geometrical model. The convex hull is not only used at the end of clustering analysis for the geometric data interpretation but also used during the fuzzy data partitioning within an online sequential procedure in order to calculate the membership function. Consequently, a pure fuzzy clustering algorithm is obtained where clusters are fitted to the data distribution by means of the fuzzy membership of patterns to each cluster. The numerical results reported in the paper show the validity and the efficacy of the proposed approach with respect to other well-known clustering algorithms

    Monitoring SDG localisation: an evidence-based approach to standardised monitoring frameworks

    Get PDF
    [Abstract:] This article studies closeness between indicators that local governments use to monitor Sustainable Development Goal (SDG) implementation in their Voluntary Local Reviews (VLRs) and those included in the standardised set of indicators of the European Handbook for SDG Voluntary Local Reviews. To do so, it develops an index of ‘indicator proximity’ through a qualitative semantic comparison between 2354 indicators used in a sample of 29 VLRs and the 72 indicators included in the Handbook’s standardised set. The index includes absolute and relative scores, taking into consideration size, comprehensiveness and diversity of the indicator sets included in the sample, as well as the methodological features of the Handbook’s set. The index allows to identify the VLRs with higher or lower proximity to the indicators in the standardised set and the SDGs that elicit a higher or lower degree of closeness between standard metrics and indicators selected or defined by local governments. The output shows that VLRs and the Handbook have an overall significant degree of proximity; that variables such as local government type or size or the size of VLR indicator sets do not provide additional explanation for proximity; and that SDGs that can be monitored with locally accessible and affordable data elicit higher indicator proximity

    Magnetic hot-spot generation at optical frequencies: from plasmonic metamolecules to all-dielectric nanoclusters

    Get PDF
    AbstractThe weakness of magnetic effects at optical frequencies is directly related to the lack of symmetry between electric and magnetic charges. Natural materials cease to exhibit appreciable magnetic phenomena at rather low frequencies and become unemployable for practical applications in optics. For this reason, historically important efforts were spent in the development of artificial materials. The first evidence in this direction was provided by split-ring resonators in the microwave range. However, the efficient scaling of these devices towards the optical frequencies has been prevented by the strong ohmic losses suffered by circulating currents. With all of these considerations, artificial optical magnetism has become an active topic of research, and particular attention has been devoted to tailor plasmonic metamolecules generating magnetic hot spots. Several routes have been proposed in these directions, leading, for example, to plasmon hybridization in 3D complex structures or Fano-like magnetic resonances. Concurrently, with the aim of electromagnetic manipulation at the nanoscale and in order to overcome the critical issue of heat dissipation, alternative strategies have been introduced and investigated. All-dielectric nanoparticles made of high-index semiconducting materials have been proposed, as they can support both magnetic and electric Mie resonances. Aside from their important role in fundamental physics, magnetic resonances also provide a new degree of freedom for nanostructured systems, which can trigger unconventional nanophotonic processes, such as nonlinear effects or electromagnetic field localization for enhanced spectroscopy and optical trapping

    Photoinduced Temperature Gradients in Sub-wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones

    Full text link
    Plasmonic structures are renowned for their capability to efficiently convert light into heat at the nanoscale. However, despite the possibility to generate deep sub-wavelength electromagnetic hot spots, the formation of extremely localized thermal hot spots is an open challenge of research, simply because of the diffusive spread of heat along the whole metallic nanostructure. Here we tackle this challenge by exploiting single gold nanocones. We theoretically show how these structures can indeed realize extremely high temperature gradients within the metal, leading to deep sub-wavelength thermal hot spots, owing to their capability of concentrating light at the apex under resonant conditions even under continuous wave illumination. A three-dimensional Finite Element Method model is employed to study the electromagnetic field in the structure and subsequent thermoplasmonic behaviour, in terms of the three-dimensional temperature distribution. We show how the latter is affected by nanocone size, shape, and composition of the surrounding environment. Finally, we anticipate the use of photoinduced temperature gradients in nanocones for applications in optofluidics and thermoelectrics or for thermally induced nanofabrication

    LexMeter. Validation of an automated system for the assessment of lexical competence of medical students as a prerequisite for the development of an adaptive e-learning system

    Get PDF
    Distance learning is used in medical education, even if some recent meta-analyses indicated that it is no more effective than traditional methods. To exploit the technological capabilities, adaptive distance learning systems aim to bridge the gap between the educational offer and the learner’s need. A decrease of lexical competence has been noted in many western countries, so lexical competence could be a possible target for adaptation. The “Adaptive message learning” project (Am-learning) is aimed at designing and implementing an adaptive e-learning system, driven by lexical competence. The goal of the project is to modulate texts according to the estimated skill of learners, to allow a better comprehension. LexMeter is the first of the four modules of the Am-learning system. It outlines an initial profile of the learner’s lexical competence and can also produce cloze tests, a test based on a completion task. A validation test of LexMeter was run on 443 medical students of the first, third, and sixth year at the University “Sapienza” of Rome. Six cloze tests were automatically produced, with 10 gaps each. The tests were different for each year and with varying levels of difficulty. A last cloze test was manually created as a control. The difference of the mean score between the easy tests and the tests with a medium level of difficulty was statistically significant for the third year students but not for first and sixth year. The score of the automatically generated tests showed a slight but significant correlation with the control test. The reliability (Cronbach alpha) of the different tests fluctuated under and above 0.60, as an acceptable level. In fact, classical item analysis revealed that the tests were on the average too simple. Lexical competence is a relevant outcome and its assessment allows an early detection of students at risk. Cloze tests can also be used to assess specific knowledge of technical jargon and to train reasoning skill

    All-Optical Reconfiguration of Ultrafast Dichroism in Gold Metasurfaces

    Get PDF
    Optical metasurfaces have come into the spotlight as a promising platform for light manipulation at the nanoscale, including ultrafast all-optical control via excitation with femtosecond laser pulses. Recently, dichroic metasurfaces have been exploited to modulate the polarization state of light with unprecedented speed. This work theoretically predicts and experimentally demonstrates by pump–probe spectroscopy the capability to reconfigure the ultrafast dichroic signal of a gold metasurface by simply acting on the polarization of the pump pulse, which is shown to reshape the spatio-temporal distribution of the optical perturbation. The photoinduced anisotropic response, driven by out-of-equilibrium carriers and extinguished in a sub-picosecond temporal window, is readily controlled in intensity by tuning the polarization direction of the excitation up to a full sign reversal. Hence, nonlinear metasurfaces are here demonstrated to offer the flexibility to tailor their ultrafast optical response in a fully all-optically reconfigurable platform

    Electromagnetic and electromechanical applications of graphene-based materials

    Get PDF
    This volume contains the extended abstracts of the contributions presented at the workshop Nanoscale Excitations in Emergent Materials (NEEM 2015) held in Rome from 12 to 14 October 2015, an event organized and supported in the framework of the Bilateral Cooperation Agreement between Italy and India within the project of major relevance "Investigating local structure and magnetism of cobalt nano-structures", funded by the Italian Ministry of Foreign Affairs and the Department of Science and Technology in India

    Nonlinear Hall effect as a local probe of plasmonic magnetic hot spots

    Full text link
    Recently developed plasmonic nanostructures are able to generate intense and localized magnetic hot spots in a large spectral range from the terahertz to the visible. However, a direct measurement of the magnetic field at the hot spot has not been performed yet, due to the absence of magnetic field detectors that work at those high frequencies and that fit the hot-spot area. We propose to place a graphene ribbon in the hot spot of a plasmonic nanostructure driven by a laser beam, such that a current is generated due to both the magnetic field at the hot spot and the electric field of the laser. We demonstrate that a nonlinear Hall voltage, which can be measured by standard electrical means, builds up across the ribbon, making it possible to directly probe the magnetic field at the hot spot.Comment: 9 pages, 7 figure
    • 

    corecore