19 research outputs found

    Sea Storm Analysis: Evaluation of Multiannual Wave Parameters Retrieved from HF Radar and Wave Model

    Get PDF
    Intense atmospheric disturbances, which impact directly on the sea surface causing a significant increase in wave height and sometimes strong storm surges, have become increasingly frequent in recent years in the Mediterranean Sea, producing extreme concern in highly populated coastal areas, such as the Gulf of Naples (Western Mediterranean Sea, Central Tyrrhenian Sea). In this work, fifty-six months of wave parameters retrieved by an HF radar network are integrated with numerical outputs to analyze the seasonality of extreme events in the study area and to investigate the performance of HF radars while increasing their distances from the coast. The model employed is the MWM (Mediterranean Wind-Wave Model), providing a wind-wave dataset based on numerical models (the hindcast approach) and implemented in the study area with a 0.03° spatial resolution. The integration and comparison with the MWM dataset, carried out using wave parameters and spectral information, allowed us to analyze the availability and accuracy of HF sampling during the investigated period. The statistical comparisons highlight agreement between the model and the HF radars during episodes of sea storms. The results confirm the potential of HF radar systems as long-term monitoring observation platforms, and allow us to give further indications on the seasonality of sea storms under different meteorological conditions and on their energy content in semi-enclosed coastal areas, such as the Gulf of Naples

    Producing or reproducing reasoning? Socratic dialog is very effective, but only for a few

    Get PDF
    Successful communication between a teacher and a student is at the core of pedagogy. A well known example of a pedagogical dialog is 'Meno', a socratic lesson of geometry in which a student learns (or 'discovers') how to double the area of a given square 'in essence, a demonstration of Pythagoras' theorem. In previous studies we found that after engaging in the dialog participants can be divided in two kinds: Those who can only apply a rule to solve the problem presented in the dialog and those who can go beyond and generalize that knowledge to solve any square problems. Here we study the effectiveness of this socratic dialog in an experimental and a control high-school classrooms, and we explore the boundaries of what is learnt by testing subjects with a set of 9 problems of varying degrees of difficulty. We found that half of the adolescents did not learn anything from the dialog. The other half not only learned to solve the problem, but could abstract something more: The geometric notion that the diagonal can be used to solve diverse area problems. Conceptual knowledge is critical for achievement in geometry, and it is not clear whether geometric concepts emerge spontaneously on the basis of universal experience with space, or reflect intrinsic properties of the human mind. We show that, for half of the learners, an exampled-based Socratic dialog in lecture form can give rise to formal geometric knowledge that can be applied to new, different problems.Fil: Goldin, Andrea Paula. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pedroncini, Olivia. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sigman, Mariano. Universidad Torcuato Di Tella; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Management of harmful benthic dinoflagellates requires targeted sampling methods and alarm thresholds

    No full text
    Concern regarding Benthic Harmful Algal Blooms (BHABs) is increasing since some harmful benthic species have been identified in new areas. In the Mediterranean basin, the most common harmful benthic microalgae are Ostreopsis cf. ovata and Prorocentrum lima, which produce palytoxin-like compounds and okadaic acid respectively, and the need to implement monitoring activities has increased. However, a general agreement on appropriate strategies (e.g. sampling season, definition of alarm thresholds, etc.) is still lagging behind, especially for P. lima, whose proliferation dynamics are still poorly known

    MWM: A 35 years wind&wave high resolution hindcast dataset and an operational forecast service for the mediterranean sea

    No full text
    The use of reliable wind and wave data for the planning of operational activities at sea is considered of primary importance. This regards the coastal engineering, the oil&gas and recoverable energy fields, the civil protection, the design of offshore structures and ships, the planning of operations at sea and so on. DHI and HyMOLab (Hydrodynamics and Met-Ocean Laboratory of the Dept. of Engineering and Architecture of the University of Trieste) have undertaken a joint research project with the aim to develop a state-of-art wind-wave hindcast dataset for the Mediterranean Sea. The dataset consists of 35 years of hourly data for the period 1979-2013, obtained from a last-generation model chain. The meteorological model used is WRF-ARW, one of the most widely used state-of-the-art open-source non-hydrostatic model. The CFSR d093.0 hourly dataset with a spatial resolution of 0.5\ub0 provides the boundary and initial conditions. MIKE21 is used as the wave model with resolution ranging from 0.1\ub0 to 0.03\ub0 approximately. The use of a local area meteorological model guarantees higher levels of resolution and accuracy in an area such as the Mediterranean Sea where the complex orography and coastline induce short-time/smallspace weather scales. The atmospheric and wave models performance is checked against seven satellite datasets, missions Envisat, ERS-2, Geosat FO, Jason-1, Jason-2, Topex-Poseidon and CryoSat, by means of a procedure based on the moving window technique. Wave data close to coast are compared with available data from more than 20 buoys. The validation performed at the time of the preparation of this manuscript involves ten years of data (2002-2011) and is based on the significant wave height parameter. The results are summarized in probability scatter plots, which show a very good accuracy of the model for both the comparisons with satellite and fixed buoys. Taking advantage of the model set-up performed for hindcast purposes and verified with measured data, an operational wind-wave forecast service has been developed and put to use. The forecast service uses the GFS dataset to provide the boundary and initial conditions

    Participants that answered correctly the eight questions to test far transfer.

    No full text
    <p>Black bars show participants that, after the lecture, had transferred the original problem to a new square (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0173584#pone.0173584.g001" target="_blank">Fig 1</a>). White or grey bars show participants that could not do that transfer (from the Control and the Experimental classes, respectively). No Control participant could transfer the original problem. Top row: Diagonal-related problems (DR); Bottom row: Diagonal-non-related problems (DnR).</p

    The ‘Meno procedure’.

    No full text
    <p>The ‘diagonal argument’ allows to draw a square whose area exactly doubles (right, black) the 2 × 2 original square (left).</p

    The eight pictorial problems and one (of their many) solutions.

    No full text
    <p>The original square for each draw is light gray, while the solution is black. Top row: Diagonal-related problems (DR); Bottom row: Diagonal-non-related problems (DnR).</p

    Mathematical Modeling Framework of Physical Effects Induced by Sediments Handling Operations in Marine and Coastal Areas

    No full text
    In recent years increasing attention has been paid to environmental effects that may result from marine dredging and disposal operations. In general, the fine-grained fraction of handled sediments can be dispersed far from the intervention site as a turbidity plume, depending on the specific site and operational parameters. Starting from a literature review, this paper suggests standards for estimating and characterizing the sediment source term, for setting up far-field modeling studies and analyzing numerical results, with the aim of optimizing, also from an economic point of view, the different project, execution and monitoring phases. The paper proposes an integrated modeling approach for simulating sediment dispersion due to sediment handling operations in different marine-coastal areas (off-shore, near-shore and semi-enclosed basins). Attention is paid to the characterization of sediment source terms due to different operational phases (removal, transport and disposal). The paper also deals with the definition of accuracy level of modeling activities, with regard to the main physical processes characterizing the different marine&#8211;coastal areas and to the type of environmental critical issues near the intervention site (if any). The main relationships between modeling and monitoring are given for the different design and management phases to support the selection of appropriate technical alternatives and monitoring actions and to ensure the environmental compliance of the proposed interventions
    corecore