937 research outputs found

    The unbearable (technical) unreliability of automated facial emotion recognition

    Get PDF
    Emotion recognition, and in particular acial emotion recognition (FER), is among the most controversial applications of machine learning, not least because of its ethical implications for human subjects. In this article, we address the controversial conjecture that machines can read emotions from our facial expressions by asking whether this task can be performed reliably. This means, rather than considering the potential harms or scientific soundness of facial emotion recognition systems, focusing on the reliability of the ground truths used to develop emotion recognition systems, assessing how well different human observers agree on the emotions they detect in subjects' faces. Additionally, we discuss the extent to which sharing context can help observers agree on the emotions they perceive on subjects' faces. Briefly, we demonstrate that when large and heterogeneous samples of observers are involved, the task of emotion detection from static images crumbles into inconsistency. We thus reveal that any endeavour to understand human behaviour from large sets of labelled patterns is over-ambitious, even if it were technically feasible. We conclude that we cannot speak of actual accuracy for facial emotion recognition systems for any practical purposes

    Photon-number resolving detector based on a series array of superconducting nanowires

    Get PDF
    We present the experimental demonstration of a superconducting photon number resolving detector. It is based on the series connection of N superconducting nanowires, each connected in parallel to an integrated resistor. The device provides a single voltage readout, proportional to the number of photons absorbed in distinct nanowires. Clearly separated output levels corresponding to the detection of n=1-4 photons are observed in a 4-element detector fabricated from an NbN film on GaAs substrate, with a single-photon system quantum efficiency of 2.6% at the wavelength of 1300nm. The series-nanowire structure is promising in view of its scalability to large photon numbers and high efficiencies.Comment: 12 pages, 6 figure

    COVID-19 pandemic: usefulness of telemedicine in management of arrhythmias in elderly people

    Get PDF
    In March 2020, the WHO defined the diffusion of novel coronavirus, Severe Acute Respiratory Syndrome-Coronavirus- 2 (SARS-CoV-2) as pandemic.[13] As a consequence, the Italian Government among others has enforced quarantine on the population to contain the diffusion of the infection

    Ultrasensitive N-photon interferometric autocorrelator

    Get PDF
    We demonstrate a novel method to measure the Nth-order (N=1, 2, 3, 4) interferometric autocorrelation with high sensitivity and temporal resolution. It is based on the combination of linear absorption and nonlinear detection in a superconducting nanodetector, providing much higher efficiency than methods based on all-optical nonlinearities. Its temporal resolution is only limited by the quasi-particle energy relaxation time, which is directly measured to be in the 20 ps range for the NbN films used in this work. We present a general model of interferometric autocorrelation with these nonlinear detectors and discuss the comparison with other approaches and possible improvements

    Site Characterization Data Model and GIS-based Tools for Offshore Engineering Projects

    Get PDF
    Offshore engineering projects require the management of a huge amount of heterogeneous georeferenced data - among others metocean, geophysical, geotechnical, and environmental, which need a Data Model, data visualization and data analytics features on a common geographic basis. A Digital Data Platform (DDP) has been developed on a GIS ambient with the aim to speed up the engineering design process (i.e. minimization of routine operations), and also prevent misalignment of the data originating from different sources from Owner to Suppliers and any potential loss of information. The proposed GIS architecture is composed by two main components: i) the Data Model geodatabase, and ii) the GIS-Model Toolbar add-in. The proposed development represents a step forward on the definition of a common specification and dictionary for offshore project execution overcoming the current bottlenecking and inefficiency on the design phases between the project owner and the engineering contractor. The paper illustrates “what” and “how”, and in particular: i) the geodatabase and Data Model framework, ii) the required parameters to be organized and stored for offshore engineering design, and iii) the widgets implementation (i.e. GIS-based tools). Its application on a case study project with practical examples is presented.

    Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery

    Get PDF
    The implantation of chondrocytes, seeded on matrices such as hyaluronic acid or collagen membranes, is a method that is being widely used for the treatment of chondral defects. The aim of the present study was to evaluate the distribution, viability and phenotype expression of the cells seeded on a collagen membrane just at the time of the implantation. Twelve patients who were suffering from articular cartilage lesions were treated by the MACI(®) procedure. The residual part of each membrane was tested by colorimetric assay (MTT) and histochemical and ultrastructural analyses were carried out. In all of the samples a large number of viable cells, quite homogenously distributed, was detected. The cells expressed the markers of the differentiated hyaline chondrocytes. These data reassure in that the MACI procedure provides a suitable engineered tissue for cartilage repair, in line with the clinical evidences emerging in the literature

    Early and long-term impacts of browsing by roe deer in oak coppiced woods along a gradient of population density

    Get PDF
    Over the last few decades, wild ungulate populations have exhibited relevant geographic and demographic expansion in most European countries; roe deer is amongst the most widespread ungulate species. The increasing roe deer densities have led to strong impact on forest regeneration; the problem has been recently recognized in coppice woods, a silvicultural system which is widespread in Italy, where it amounts to about 56% of the total national forested area.In this study we investigated the effect of roe deer browsing on the vegetative regeneration of Turkey oak few years after coppicing, along a gradient of roe deer density. A browsing index revealed that browsing impact was high at any given roe deer density but increased at higher density, with the browsing rate ranging from 65% to 79%. We also analyzed the long-term impact of browsing six and eleven years after coppicing under a medium roe deer density. Results indicated the early impact are not ephemeral but produced prolonged impacts through time, with an average reduction in volume of -57% and -41% six and eleven years after coppicing, respectively. Based on these results we proposed integrating browsing monitoring with roe deer density estimation to allow identifying ungulate densities which are compatible with silvicultural and forest management objectives. The proposed browsing index can be regarded as an effective management tool, on account of its simplicity and cost-effectiveness, being therefore highly suitable for routine, large scale monitoring of browsing impact
    corecore