1,847 research outputs found

    Interferometric modulation of quantum cascade interactions

    Full text link
    We consider many-body quantum systems dissipatively coupled by a cascade network, i.e. a setup in which interactions are mediated by unidirectional environmental modes propagating through a linear optical interferometer. In particular we are interested in the possibility of inducing different effective interactions by properly engineering an external dissipative network of beam-splitters and phase-shifters. In this work we first derive the general structure of the master equation for a symmetric class of translation-invariant cascade networks. Then we show how, by tuning the parameters of the interferometer, one can exploit interference effects to tailor a large variety of many-body interactions.Comment: 12 pages, 10 figure

    The capacity of coherent-state adaptive decoders with interferometry and single-mode detectors

    Full text link
    A class of Adaptive Decoders (AD's) for coherent-state sequences is studied, including in particular the most common technology for optical-signal processing, e.g., interferometers, coherent displacements and photon-counting detectors. More generally we consider AD's comprising adaptive procedures based on passive multi-mode Gaussian unitaries and arbitrary single-mode destructive measurements. For classical communication on quantum phase-insensitive Gaussian channels with a coherent-state encoding, we show that the AD's optimal information transmission rate is not greater than that of a single-mode decoder. Our result also implies that the ultimate classical capacity of quantum phase-insensitive Gaussian channels is unlikely to be achieved with the considered class of AD's.Comment: v3: final version; 6 pages; 2 figure

    Multi-Phase Hadamard receivers for classical communication on lossy bosonic channels

    Full text link
    A scheme for transferring classical information over a lossy bosonic channel is proposed by generalizing the proposal presented in Phys. Rev. Lett. 106, 240502 (2011) by Guha. It employs codewords formed by products of coherent states of fixed mean photon number with multiple phases which, through a passive unitary transformation, reduce to a Pulse-Position Modulation code with multiple pulse phases. The maximum information rate achievable with optimal, yet difficult to implement, detection schemes is computed and shown to saturate the classical capacity of the channel in the low energy regime. An easy to implement receiver based on a conditional Dolinar detection scheme is also proposed finding that, while suboptimal, it allows for improvements in an intermediate photon-number regime with respect to previous proposals.Comment: final version: minor changes; 8+3 pages and 5 figure

    Interferometric Quantum Cascade Systems

    Full text link
    In this work we consider quantum cascade networks in which quantum systems are connected through unidirectional channels that can mutually interact giving rise to interference effects. In particular we show how to compute master equations for cascade systems in an arbitrary interferometric configuration by means of a collisional model. We apply our general theory to two specific examples: the first consists in two systems arranged in a Mach-Zender-like configuration; the second is a three system network where it is possible to tune the effective chiral interactions between the nodes exploiting interference effects.Comment: 15 pages, 5 figure

    Coherent-state discrimination via non-heralded probabilistic amplification

    Full text link
    A scheme for the detection of low-intensity optical coherent signals was studied which uses a probabilistic amplifier operated in the non-heralded version, as the underlying non-linear operation to improve the detection efficiency. This approach allows us to improve the statistics by keeping track of all possible outcomes of the amplification stage (including failures). When compared with an optimized Kennedy receiver, the resulting discrimination success probability we obtain presents a gain up to ~1.85% and it approaches the Helstrom bound appreciably faster than the Dolinar receiver, when employed in an adaptive strategy. We also notice that the advantages obtained can be ultimately associated with the fact that, in the high gain limit, the non-heralded version of the probabilistic amplifier induces a partial dephasing which preserves quantum coherence among low energy eigenvectors while removing it elsewhere. A proposal to realize such transformation based on an optical cavity implementation is presented.Comment: Final version: 6 pages and 4 figure

    Slow dynamics and thermodynamics of open quantum systems

    Full text link
    We develop a perturbation theory of quantum (and classical) master equations with slowly varying parameters, applicable to systems which are externally controlled on a time scale much longer than their characteristic relaxation time. We apply this technique to the analysis of finite-time isothermal processes in which, differently from quasi-static transformations, the state of the system is not able to continuously relax to the equilibrium ensemble. Our approach allows to formally evaluate perturbations up to arbitrary order to the work and heat exchange associated to an arbitrary process. Within first order in the perturbation expansion, we identify a general formula for the efficiency at maximum power of a finite-time Carnot engine. We also clarify under which assumptions and in which limit one can recover previous phenomenological results as, for example, the Curzon-Ahlborn efficiency.Comment: 10 page

    Quantum optomechanical piston engines powered by heat

    Full text link
    We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. Viewed from a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.Comment: 10 pages, 6 figure

    On the time optimal thermalization of single mode Gaussian states

    Full text link
    We consider the problem of time optimal control of a continuous bosonic quantum system subject to the action of a Markovian dissipation. In particular, we consider the case of a one mode Gaussian quantum system prepared in an arbitrary initial state and which relaxes to the steady state due to the action of the dissipative channel. We assume that the unitary part of the dynamics is represented by Gaussian operations which preserve the Gaussian nature of the quantum state, i.e. arbitrary phase rotations, bounded squeezing and unlimited displacements. In the ideal ansatz of unconstrained quantum control (i.e. when the unitary phase rotations, squeezing and displacement of the mode can be performed instantaneously), we study how control can be optimized for speeding up the relaxation towards the fixed point of the dynamics and we analytically derive the optimal relaxation time. Our model has potential and interesting applications to the control of modes of electromagnetic radiation and of trapped levitated nanospheres.Comment: 10 pages, 1 figur

    Experiments testing macroscopic quantum superpositions must be slow

    Get PDF
    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.Comment: 12 pages, 1 figur

    Quantum state majorization at the output of bosonic Gaussian channels

    Get PDF
    Quantum communication theory explores the implications of quantum mechanics to the tasks of information transmission. Many physical channels can be formally described as quantum Gaussian operations acting on bosonic quantum states. Depending on the input state and on the quality of the channel, the output suffers certain amount of noise. For a long time it has been conjectured, but never proved, that output states of Gaussian channels corresponding to coherent input signals are the less noisy ones (in the sense of a majorization criterion). In this work we prove this conjecture. Specifically we show that every output state of a phase insensitive Gaussian channel is majorized by the output state corresponding to a coherent input. The proof is based on the optimality of coherent states for the minimization of strictly concave output functionals. Moreover we show that coherent states are the unique optimizers.Comment: 7 pages, 1 figure. Published versio
    • …
    corecore