33 research outputs found

    Association between polygenic risk score of Alzheimer’s disease and plasma phosphorylated tau in individuals from the Alzheimer’s Disease Neuroimaging Initiative

    Get PDF
    BACKGROUND: Recent studies suggest that plasma phosphorylated tau181 (p-tau181) is a highly specific biomarker for Alzheimer’s disease (AD)-related tau pathology. It has great potential for the diagnostic and prognostic evaluation of AD, since it identifies AD with the same accuracy as tau PET and CSF p-tau181 and predicts the development of AD dementia in cognitively unimpaired (CU) individuals and in those with mild cognitive impairment (MCI). Plasma p-tau181 may also be used as a biomarker in studies exploring disease pathogenesis, such as genetic or environmental risk factors for AD-type tau pathology. The aim of the present study was to investigate the relation between polygenic risk scores (PRSs) for AD and plasma p-tau181. METHODS: Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was used to examine the relation between AD PRSs, constructed based on findings in recent genome-wide association studies, and plasma p-tau181, using linear regression models. Analyses were performed in the total sample (n = 818), after stratification on diagnostic status (CU (n = 236), MCI (n = 434), AD dementia (n = 148)), and after stratification on Aβ pathology status (Aβ positives (n = 322), Aβ negatives (n = 409)). RESULTS: Associations between plasma p-tau181 and APOE PRSs (p = 3e−18–7e−15) and non-APOE PRSs (p = 3e−4–0.03) were seen in the total sample. The APOE PRSs were associated with plasma p-tau181 in all diagnostic groups (CU, MCI, and AD dementia), while the non-APOE PRSs were associated only in the MCI group. The APOE PRSs showed similar results in amyloid-β (Aβ)-positive and negative individuals (p = 5e−5–1e−3), while the non-APOE PRSs were associated with plasma p-tau181 in Aβ positives only (p = 0.02). CONCLUSIONS: Polygenic risk for AD including APOE was found to associate with plasma p-tau181 independent of diagnostic and Aβ pathology status, while polygenic risk for AD beyond APOE was associated with plasma p-tau181 only in MCI and Aβ-positive individuals. These results extend the knowledge about the relation between genetic risk for AD and p-tau181, and further support the usefulness of plasma p-tau181 as a biomarker of AD

    Quantification of SNAP-25 with mass spectrometry and Simoa: a method comparison in Alzheimer's disease

    Get PDF
    BACKGROUND: Synaptic dysfunction and degeneration are central to Alzheimer's disease (AD) and have been found to correlate strongly with cognitive decline. Thus, studying cerebrospinal fluid (CSF) biomarkers reflecting synaptic degeneration, such as the presynaptic protein synaptosomal-associated protein 25 (SNAP-25), is of importance to better understand the AD pathophysiology. METHODS: We compared a newly developed Single molecule array (Simoa) immunoassay for SNAP-25 with an in-house immunoprecipitation mass spectrometry (IP-MS) method in a well-characterized clinical cohort (n = 70) consisting of cognitively unimpaired (CU) and cognitively impaired (CI) individuals with and without Aβ pathology (Aβ+ and Aβ-). RESULTS: A strong correlation (Spearman's rank correlation coefficient (rs) > 0.88; p < 0.0001) was found between the Simoa and IP-MS methods, and no statistically significant difference was found for their clinical performance to identify AD pathophysiology in the form of Aβ pathology. Increased CSF SNAP-25 levels in CI Aβ+ compared with CU Aβ- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) and CI Aβ- (Simoa, p ≤ 0.01; IP-MS, p ≤ 0.05) were observed. In independent blood samples (n = 32), the Simoa SNAP-25 assay was found to lack analytical sensitivity for quantification of SNAP-25 in plasma. CONCLUSIONS: These results indicate that the Simoa SNAP-25 method can be used interchangeably with the IP-MS method for the quantification of SNAP-25 in CSF. Additionally, these results confirm that CSF SNAP-25 is increased in relation to amyloid pathology in the AD continuum

    CSF tau368/total-tau ratio reflects cognitive performance and neocortical tau better compared to p-tau181 and p-tau217 in cognitively impaired individuals

    Get PDF
    INTRODUCTION: Cerebrospinal fluid (CSF) tau biomarkers are reliable diagnostic markers for Alzheimer's disease (AD). However, their strong association with amyloid pathology may limit their reliability as specific markers of tau neurofibrillary tangles. A recent study showed evidence that a ratio of CSF C-terminally truncated tau (tau368, a tangle-enriched tau species), especially in ratio with total tau (t-tau), correlates strongly with tau PET tracer uptake. In this study, we set to evaluate the performance of the tau368/t-tau ratio in capturing tangle pathology, as indexed by a high-affinity tau PET tracer, as well as its association with severity of clinical symptoms. METHODS: In total, 125 participants were evaluated cross-sectionally from the Translational Biomarkers of Aging and Dementia (TRIAD) cohort (21 young, 60 cognitively unimpaired [CU] elderly [15 Aβ+], 10 Aβ+ with mild cognitive impairment [MCI], 14 AD dementia patients, and 20 Aβ- individuals with non-AD cognitive disorders). All participants underwent amyloid and tau PET scanning, with [18F]-AZD4694 and [18F]-MK6240, respectively, and had CSF measurements of p-tau181, p-tau217, and t-tau. CSF concentrations of tau368 were quantified in all individuals with an in-house single molecule array assay. RESULTS: CSF tau368 concentration was not significantly different across the diagnostic groups, although a modest increase was observed in all groups as compared with healthy young individuals (all P limbic regions > transentorhinal regions). Importantly, linear regression models indicated that these associations were not confounded by Aβ PET SUVr. CSF tau368/t-tau also tended to continue to become more abnormal with higher tau burden, whereas the other biomarkers plateaued after the limbic stage. Finally, the tau368/t-tau ratio correlated more strongly with cognitive performance in individuals with symptomatic AD as compared to t-tau, p-tau217 and p-tau181. CONCLUSION: The tau368/t-tau ratio captures novel aspects of AD pathophysiology and disease severity in comparison to established CSF tau biomarkers, as it is more closely related to tau PET SUVR and cognitive performance in the symptomatic phase of the disease

    Association between polygenic risk score of Alzheimer's disease and plasma phosphorylated tau in individuals from the Alzheimer's Disease Neuroimaging Initiative

    Get PDF
    Polygenic risk for AD including APOE was found to associate with plasma p-tau181 independent of diagnostic and Aβ pathology status, while polygenic risk for AD beyond APOE was associated with plasma p-tau181 only in MCI and Aβ-positive individuals. These results extend the knowledge about the relation between genetic risk for AD and p-tau181, and further support the usefulness of plasma p-tau181 as a biomarker of AD.\nRecent studies suggest that plasma phosphorylated tau181 (p-tau181) is a highly specific biomarker for Alzheimer's disease (AD)-related tau pathology. It has great potential for the diagnostic and prognostic evaluation of AD, since it identifies AD with the same accuracy as tau PET and CSF p-tau181 and predicts the development of AD dementia in cognitively unimpaired (CU) individuals and in those with mild cognitive impairment (MCI). Plasma p-tau181 may also be used as a biomarker in studies exploring disease pathogenesis, such as genetic or environmental risk factors for AD-type tau pathology. The aim of the present study was to investigate the relation between polygenic risk scores (PRSs) for AD and plasma p-tau181.\nData from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was used to examine the relation between AD PRSs, constructed based on findings in recent genome-wide association studies, and plasma p-tau181, using linear regression models. Analyses were performed in the total sample (n = 818), after stratification on diagnostic status (CU (n = 236), MCI (n = 434), AD dementia (n = 148)), and after stratification on Aβ pathology status (Aβ positives (n = 322), Aβ negatives (n = 409)).\n), while the non-APOE PRSs were associated with plasma p-tau181 in Aβ positives only (p = 0.02).\nCONCLUSIONS\nBACKGROUND\nMETHODS\nRESULT

    Plasma p-tau231 and p-tau217 as state markers of amyloid-β pathology in preclinical Alzheimer’s disease

    Get PDF
    Blood biomarkers indicating elevated amyloid-β (Aβ) pathology in preclinical Alzheimer's disease are needed to facilitate the initial screening process of participants in disease-modifying trials. Previous biofluid data suggest that phosphorylated tau231 (p-tau231) could indicate incipient Aβ pathology, but a comprehensive comparison with other putative blood biomarkers is lacking. In the ALFA+ cohort, all tested plasma biomarkers (p-tau181, p-tau217, p-tau231, GFAP, NfL and Aβ42/40) were significantly changed in preclinical Alzheimer's disease. However, plasma p-tau231 reached abnormal levels with the lowest Aβ burden. Plasma p-tau231 and p-tau217 had the strongest association with Aβ positron emission tomography (PET) retention in early accumulating regions and associated with longitudinal increases in Aβ PET uptake in individuals without overt Aβ pathology at baseline. In summary, plasma p-tau231 and p-tau217 better capture the earliest cerebral Aβ changes, before overt Aβ plaque pathology is present, and are promising blood biomarkers to enrich a preclinical population for Alzheimer's disease clinical trials

    Plasma and CSF biomarkers in a memory clinic: Head-to-head comparison of phosphorylated tau immunoassays

    Get PDF
    INTRODUCTION: Direct comparisons of the main blood phosphorylated tau immunoassays in memory clinic populations are needed to understand possible differences. METHODS: In the BIODEGMAR study, 197 participants presenting with cognitive complaints were classified into an Alzheimer's disease (AD) or a non-AD cerebrospinal fluid (CSF) profile group, according to their amyloid beta 42/ phosphorylated tau (Aβ42/p-tau) ratio. We performed a head-to-head comparison of nine plasma and nine CSF tau immunoassays and determined their accuracy to discriminate abnormal CSF Aβ42/p-tau ratio. RESULTS: All studied plasma tau biomarkers were significantly higher in the AD CSF profile group compared to the non-AD CSF profile group and significantly discriminated abnormal CSF Aβ42/p-tau ratio. For plasma p-tau biomarkers, the higher discrimination accuracy was shown by Janssen p-tau217 (r = 0.76; area under the curve [AUC] = 0.96), ADx p-tau181 (r = 0.73; AUC = 0.94), and Lilly p-tau217 (r = 0.73; AUC = 0.94). DISCUSSION: Several plasma p-tau biomarkers can be used in a specialized memory clinic as a stand-alone biomarker to detect biologically-defined AD. HIGHLIGHTS: Patients with an Alzheimer's disease cerebrospinal fluid (AD CSF) profile have higher plasma phosphorylated tau (p-tau) levels than the non-AD CSF profile group. All plasma p-tau biomarkers significantly discriminate patients with an AD CSF profile from the non-AD CSF profile group. Janssen p-tau217, ADx p-tau181, and Lilly p-tau217 in plasma show the highest accuracy to detect biologically defined AD. Janssen p-tau217, ADx p-tau181, Lilly p-tau217, Lilly p-tau181, and UGot p-tau231 in plasma show performances that are comparable to their CSF counterparts

    P-tau235: a novel biomarker for staging preclinical Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is characterised by a long preclinical phase. Although phosphorylated tau (p-tau) species such as p-tau217 and p-tau231 provide accurate detection of early pathological changes, other biomarkers capable of staging disease progression during preclinical AD are still needed. Combining exploratory and targeted mass spectrometry methods in neuropathologically confirmed brain tissue, we observed that p-tau235 is a prominent feature of AD pathology. In addition, p-tau235 seemed to be preceded by p-tau231, in what appeared to be a sequential phosphorylation event. To exploit its biomarker potential in cerebrospinal fluid (CSF), we developed and validated a new p-tau235 Simoa assay. Using three clinical cohorts, we demonstrated that (i) CSF p-235 increases early in AD continuum, and (ii) changes in CSF p-tau235 and p-tau231 levels during preclinical AD are consistent with the sequential phosphorylation evidence in AD brain. In conclusion, CSF p-tau235 appears to be not only a highly specific biomarker of AD but also a promising staging biomarker for the preclinical phase. Thus, it could prove useful tracking disease progression and help enriching clinical trial recruitment

    Serum and cerebrospinal fluid biomarker profiles in acute SARS-CoV-2-associated neurological syndromes.

    Get PDF
    Preliminary pathological and biomarker data suggest that SARS-CoV-2 infection can damage the nervous system. To understand what, where and how damage occurs, we collected serum and CSF from patients with COVID-19 and characterized neurological syndromes involving the PNS and CNS (n = 34). We measured biomarkers of neuronal damage and neuroinflammation, and compared these with non-neurological control groups, which included patients with (n = 94) and without (n = 24) COVID-19. We detected increased concentrations of neurofilament light, a dynamic biomarker of neuronal damage, in the CSF of those with CNS inflammation (encephalitis and acute disseminated encephalomyelitis) [14 800 pg/ml (400, 32 400)], compared to those with encephalopathy [1410 pg/ml (756, 1446)], peripheral syndromes (Guillain-Barré syndrome) [740 pg/ml (507, 881)] and controls [872 pg/ml (654, 1200)]. Serum neurofilament light levels were elevated across patients hospitalized with COVID-19, irrespective of neurological manifestations. There was not the usual close correlation between CSF and serum neurofilament light, suggesting serum neurofilament light elevation in the non-neurological patients may reflect peripheral nerve damage in response to severe illness. We did not find significantly elevated levels of serum neurofilament light in community cases of COVID-19 arguing against significant neurological damage. Glial fibrillary acidic protein, a marker of astrocytic activation, was not elevated in the CSF or serum of any group, suggesting astrocytic activation is not a major mediator of neuronal damage in COVID-19

    Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization

    No full text
    The strategic interest in the production of green hydrogen by sunlight-activated water splitting has stimulated significant efforts aimed at the implementation of active and cost-effective catalysts for the oxygen evolution reaction (OER), the overall process bottleneck. Herein, we report on an original fabrication route to OER electrocatalysts based on graphitic carbon nitride. In particular, the target systems were deposited on conductive glass substrates via a simple electrophoretic technique and functionalized with highly dispersed noble metals (Au, Ag or Au + Ag) in low amounts by radio frequency (RF)-sputtering under mild conditions. An advanced material characterization revealed the possibility of tailoring carbon nitride morphology as a function of the used precursor and of achieving a homogeneous spatial distribution of the functionalizing metals. The latter ranged from atomically dispersed (silver), to low-sized nanoaggregates (gold) or partially alloyed core–shell nanoparticles (gold+silver), with an intimate metal-nitride interfacial contact. Functional tests evidenced a remarkable sensitivity to Vis light even at low applied potentials, and photoelectrocatalytic performances directly dependent on the nature of metal species and on the features of the underlying carbon nitride deposit. These evidences, rationalized mainly on the basis of Schottky junctions and the possible concurrence of surface plasmon resonance (SPR), candidate the proposed strategy as a versatile route to cheap and efficient OER electrocatalysts for energy conversion

    Constrained instruments and their application to Mendelian randomization with pleiotropy

    No full text
    In Mendelian randomization (MR), inference about causal relationship between a phenotype of interest and a response or disease outcome can be obtained by constructing instrumental variables from genetic variants. However, MR inference requires three assumptions, one of which is that the genetic variants only influence the outcome through phenotype of interest. Pleiotropy, that is, the situation in which some genetic variants affect more than one phenotype, can invalidate these genetic variants for use as instrumental variables; thus a naive analysis will give biased estimates of the causal relation. Here, we present new methods (constrained instrumental variable [CIV] methods) to construct valid instrumental variables and perform adjusted causal effect estimation when pleiotropy exists and when the pleiotropic phenotypes are available. We demonstrate that a smoothed version of CIV performs approximate selection of genetic variants that are valid instruments, and provides unbiased estimates of the causal effects. We provide details on a number of existing methods, together with a comparison of their performance in a large series of simulations. CIV performs robustly across different pleiotropic violations of the MR assumptions. We also analyzed the data from the Alzheimer’s disease (AD) neuroimaging initiative (ADNI; Mueller et al., 2005. Alzheimer's Dementia, 11(1), 55–66) to disentangle causal relationships of several biomarkers with AD progression
    corecore