43 research outputs found

    Interference effects in the Coulomb blockade regime: current blocking and spin preparation in symmetric nanojunctions

    Get PDF
    We consider nanojunctions in the single-electron tunnelling regime which, due to a high degree of spatial symmetry, have a degenerate many body spectrum. As a consequence, interference phenomena which cause a current blocking can occur at specific values of the bias and gate voltage. We present here a general formalism to give necessary and sufficient conditions for interference blockade also in the presence of spin polarized leads. As an example we analyze a triple quantum dot single electron transistor (SET). For a set-up with parallel polarized leads, we show how to selectively prepare the system in each of the three states of an excited spin triplet without application of any external magnetic field.Comment: 10 pages, 9 figures. Corrected typos and updated reference

    Effects of spin-orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    Get PDF
    The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals which is able to reproduce experimentally observed singlet-triplet splittings; in a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that STM-based magnetoconductance measurements can yield clear signatures of both these SOI induced effects.Comment: 12 pages, 6 figure

    Non-equilibrium spin-crossover in copper phthalocyanine

    Get PDF
    We demonstrate the tip induced control of the spin state of copper phthalocyanine (CuPc) on an insulator coated substrate. Accounting for electronic correlations, we find that, under the condition of energetic proximity of neutral excited states to the anionic groundstate, the system can undergo a population inversion towards these excited states. The resulting state of the system is accompanied by a change in the total spin quantum number. Experimental signatures of the crossover are the appearance of additional nodal planes in the topographical STM images as well as a strong suppression of the current near the center of the molecule. The robustness of the effect against moderate charge conserving relaxation processes has also been tested.Comment: 5 pages, 4 figures; added supplemental material (+ 5 pages

    Dynamical symmetry breaking in transport through molecules

    Get PDF
    We analyze the interplay between vibrational and electronic degrees of freedom in charge transport across a molecular single-electron transistor. We focus on the wide class of molecules which possess quasi-degenerate vibrational eigenstates, while no degeneracy occurs for their anionic configuration. We show that the combined effect of a thermal environment and coupling to leads, involving tunneling events charging and discharging the molecule, leads to a dynamical symmetry breaking where quasi-degenerate eigenstates acquire different occupations. This imbalance gives rise to a characteristic asymmetry of the current versus an applied gate voltage.Comment: 4 pages, 2 figures, revised final published versio

    Quantum Shuttle in Phase Space

    Get PDF
    We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a cross-over from the tunnelling to the shuttling regime, thus extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise.Comment: 4 pages, 2 figures; minor changes; final version published in Phys. Rev. Let

    Current and current fluctuations in quantum shuttles

    Get PDF
    We review the properties of electron shuttles, i.e. nanoelectromechanical devices that transport electrons one-by-one by utilizing a combination of electronic and mechanical degrees of freedom. We focus on the extreme quantum limit, where the mechanical motion is quantized. We introduce the main theoretical tools needed for the analysis, e.g. generalized master equations and Wigner functions, and we outline the methods how the resulting large numerical problems can be handled. Illustrative results are given for current, noise, and full counting statistics for a number of model systems. Throughout the review we focus on the physics behind the various approximations, and some simple examples are given to illustrate the theoretical concepts. We also comment on the experimental situation.Comment: Minireview; technical level aimed at general audience, based on an invited talk at "Transport Phenomena in Micro and Nanodevices", October 17-21 Kona, Hawai

    Quantum theory of shuttling instability in a movable quantum dot array

    Full text link
    We study the shuttling instability in an array of three quantum dots the central one of which is movable. We extend the results by Armour and MacKinnon on this problem to a broader parameter regime. The results obtained by an efficient numerical method are interpreted directly using the Wigner distributions. We emphasize that the instability should be viewed as a crossover phenomenon rather than a clear-cut transition.Comment: 4 pages, 2 figures, presented at HCIS-13, Modena, July 200

    Modeling of quantum nanomechanics

    Get PDF

    Theory of STM junctions for \pi-conjugated molecules on thin insulating films

    Get PDF
    A microscopic theory of the transport in a scanning tunnelling microscope (STM) set-up is introduced for \pi-conjugated molecules on insulating films, based on the density matrix formalism. A key role is played in the theory by the energy dependent tunnelling rates which account for the coupling of the molecule to the tip and to the substrate. In particular, we analyze how the geometrical differences between the localized tip and extended substrate are encoded in the tunnelling rate and influence the transport characteristics. Finally, using benzene as an example of a planar, rotationally symmetric molecule, we calculate the STM current voltage characteristics and current maps and analyze them in terms of few relevant angular momentum channels.Comment: 19 pages, 12 figures, minor changes to conform to published versio
    corecore