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Dynamical symmetry breaking in transport through molecules
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We analyze the interplay between vibrational and electronic degrees of freedom in charge trans-
port across a molecular single-electron transistor. We focus on the wide class of molecules which
possess quasi-degenerate vibrational eigenstates, while no degeneracy occurs for their anionic con-
figuration. We show that the combined effect of a thermal environment and coupling to leads,
involving tunneling events charging and discharging the molecule, leads to a dynamical symmetry
breaking where quasi-degenerate eigenstates acquire different occupations. This imbalance gives rise
to a characteristic asymmetry of the current versus an applied gate voltage.

PACS numbers: 85.65.+h, 85.85.+j, 73.63.b

Molecular electronics is a promising answer to the de-
mand of miniaturization, reproducibility and flexibility
of electronic devices. Starting with the pioneering work
of Aviram and Ratner [1], and especially with the first
single-molecule measurement by Reed et al. [2], molec-
ular electronics has become an active research field both
experimentally and theoretically [3]. Still, fundamental
questions on the peculiar nature of single-molecule junc-
tions and their novel functionalities remain open. Among
others they involve the unique electromechanical proper-
ties of molecular junctions which render these distinctly
different from, e.g., semiconductor quantum dots.

Recent research on this particular topic has revealed a
number of interesting effects such as shuttling instabili-
ties [4, 5, 6], Franck-Condon blockade [7, 8] and, more
generally, conformational [9, 10, 11] or vibronic [12, 13,
14, 15] signatures in the electron transport character-
istics. In this respect, however, the role of coherences
in transport due to quasi-degenerate levels has not been
highlighted.

In this Letter we consider charge transport through a
molecular junction weakly contacted to two leads and ca-
pacitively coupled to a gate electrode, with focus on the
interplay between the vibrational and electronic degrees
of freedom. In particular, we address molecules charac-
terized by eigenstate dubletts in the neutral configura-
tion and non-degenerate anionic states, or vice versa, as
sketched in Fig. 1. It represents, e.g., the adiabatic po-
tential energy surfaces of biphenyl as a function of the
dihedral angle between the phenyl rings [15], to mention
just one prominent system, which has also been studied
in recent state-of-the-art transport experiments [16].

We show that dynamical symmetry breaking (DSB),
where quasi-degenerate eigenstates are differently occu-
pied, may occur and affect transport, while in the absence
of couplings to the leads these states are equally popu-
lated at finite temperature, and hence the system does
not prefer a definite parity. Temperature, on the other
hand, should not exceed a critical value above which DSB
is lost due to dephasing, caused by a thermal bath. Solv-
ing the master equation for the reduced density matrix
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FIG. 1: (color online) Electromechanical states of the
molecule. Thick black lines indicate the adiabatic potentials
V0 and V1 for the neutral (solid) and singly-charged (dashed)
molecule. Thin green (blue) lines denote the even (odd) vibra-
tional eigenfunctions (for the two potentials) displayed with a
vertical shift equal to their corresponding energy eigenvalue.
Energies are given in units of ~ω0 and lengths in terms of
the zero-point motion ∆x0 =

√

~/mω0. The arrows mark
examples of allowed and forbidden transitions.

including coherences, we demonstrate the possibility of
detecting DSB in the current through the molecule un-
der different bias and gating conditions.

To address transport in the single-electron regime,
where only the electronic ground states |0〉 of the neu-
tral and |1〉 of the anionic configuration are involved, we
describe the molecule through the Hamiltonian

HS =
p2

2m
+ |0〉〈0|V0(x) + |1〉〈1|V1(x) (1)

in terms of the corresponding adiabatic potential energy
surfaces V0(x), V1(x) associated with the softest mode co-
ordinate x. The adiabatic potentials and the related vi-
brational eigenfunctions are sketched in Fig. 1. The neu-
tral molecule is characterized by the double well potential
V0 with minima located at ±λ. For large enough barri-
ers, i.e. exponentially small tunnel splitting, the low-lying
eigenstates are organized in pairs of (quasi-)degenerate
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wave functions. The anion is modelled by a single har-
monic potential V1 with frequency ω1, centered at the
origin of the coordinate system (dashed line in Fig. 1).

We express the system coupled to leads and in contact
with a thermal bath through the Hamiltonian

H = HS + HL + HR + HB + VT + VSB . (2)

The leads are described as reservoirs of non-interacting
quasi-particles in terms of HL + HR =

∑

k;α=L,R(ǫkα −
µα)c†kαckα, where µL,R = ±∆V/2 accounts for the effects

of a symmetrically applied bias voltage and c†kα (ckα)
creates (destroys) an electron in the lead α. Transfer
of electrons is mediated by the tunneling Hamiltonian
VT = v

∑

k;α=L,R(|0〉〈1|c†kα + |1〉〈0|ckα) . Finally, HB de-
scribes a thermal bath of harmonic oscillators coupled
linearly to the displacement coordinate x via the system-
bath Hamiltonian VSB = ~g̃x

∑

q(d
†
q + dq), where d†q and

dq are bosonic creation and destruction operators associ-
ated with the oscillator with energy ~ωq.

Since we are interested only in the low-energy states,
we approximate V0(x) by two harmonic wells centered at
±λ and with frequency ω0. Formally, this is achieved by
projecting the Hamiltonian H on a smaller Hilbert space
in which we can define the identity operator as

11 = |1〉〈1| + |0〉〈0|(P+ + P−) . (3)

Here P± =
∑N

n=0 |n,±〉〈n,±| are projection operators
on the states right/left to the barrier. They are de-
fined in terms of the shifted harmonic oscillator eigenvec-
tors |n,±〉 ≡ exp(∓iλp/~)|n〉. The condition of negligi-
ble overlap between these eigenfunctions reads P+ P− =
P− P+ = 0. In the Hilbert space defined by identity (3)
we obtain as effective system Hamiltonian

Heff
S =|0〉〈0|

∑

τ=±

[

Pτ (1
2

+ d†τdτ )Pτ

]

~ω0+

+ |1〉〈1|
[

(1
2

+ d†d)~ω1 + eVg − ǫa

]

,

(4)

where d†± and d† are operators for the neutral and
charged configurations, Vg is the gate voltage, and ǫa

the electron affinity. Along similar lines we find for the
effective tunneling and system-bath Hamiltonians

V eff
T = v

∑

k;α=L,R

[

|0〉〈1|c†kα(P+ + P−) + h.c.
]

,

V eff
SB = ~g

∑

q

(dq + d†q)
{

δ|1〉〈1|(d + d†)+

+ |0〉〈0|
∑

τ=±

[Pτ (dτ + d†τ + τ2λ)Pτ ]
}

,

(5)

with g = g̃
√

2~/(mω0) and δ =
√

ω1/ω0. For transport,
we seek stationary solutions of the Liouville equation

σ̇(t) = − i

~
Trleads+bath{[Heff , W (t)]} (6)

for the reduced density matrix (RDM) σ(t) :=
Trleads+bath{W (t)}, where W (t) is the total density ma-
trix associated with the effective Hamiltonian corre-
sponding to that in Eq. (2). Treating the interac-
tions V eff

T and V eff
SB as perturbations, we rewrite Eq. (6)

in terms of three contributions: σ̇(t) = Lσ(t) =
(Lcoh + Ltun + Ldamp)σ(t). The coherent part of the
differential equation has the usual form Lcoh σ(t) =
−(i/~)[Heff

S , σ(t)] describing the evolution of the isolated
molecule. The coupling to the leads/bath gives rise to
the driving/damping terms Ltunσ(t) and Ldampσ(t).

We now perform the following standard approxima-
tions: we treat the leads as thermal reservoirs at equilib-
rium temperature T , consider the coupling to the leads
up to second order in V eff

T and, being interested in the
stationary solution, neglect non-Markovian contributions
to the equation of motion. Furthermore, neglecting off-
diagonal elements of the RDM between anionic and neu-
tral configurations, as well as between non-degenerate
eigenstates, and disregarding non-energy conserving con-
tributions, the anionic and neutral state components read

(Ltun σ)11 =
∑

α=L,R;τ=±

[

2(Γα
in σ00 Pτ + Pτ σ00 Γα

in
†) −

−(Pτ Γα
out σ11 + σ11 Γα

out
†Pτ )

]

,

(Ltun σ)
ττ ′

00 =
∑

α=L,R

Pτ

[

Γα
out σ11 + σ11 Γα

out
† − (7)

−2(Γα
in σ00 + σ00 Γα

in
†)

]

Pτ ′ ,

with rate matrices for tunneling into/out of the molecule

Γα
in =

Γα

2

∑

m,n,τ=±

|m〉〈n, τ |f(eVg + ǫnm)〈m|n, τ〉 ,

Γα
out =

Γα

2

∑

m,n,τ=±

|n, τ〉〈m| − Γα
in

† . (8)

Here f(ǫ) is the Fermi function, and Γα = (2π/~)Dα|v|2
is the bare electronic rate, with Dα the density of states in
lead α at the Fermi energy. For convenience we assumed
equal frequencies ω0 = ω1 of the neutral and anionic po-
tential, and hence ǫnm = ~ω0(m − n); calculations for
ω0 6= ω1 yielded no qualitative changes. Furthermore we
shifted the electrochemical potential eVg − ǫa → eVg in
the argument of the Fermi function. The overlap matrix
elements 〈m|n, τ〉 of the vibrational states of the neutral
and charged configurations, known as Franck-Condon
factors, determine, together with energy resonance con-
ditions, the transition rates (8) and thus the transport
characteristics of the junction. While the Franck-Condon
factors are fixed by the adiabatic potentials, the bias and
gate voltages influence the resonance conditions.

To describe relaxation and dephasing, we consider the
case of an Ohmic bath with spectral density J(ω) =
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FIG. 2: (color online) Onset of the dynamical symmetry breaking with decreasing temperature (in units of ~ω0/kB) from
bottom to top. The columns show the stationary current and the parity of the neutral and ionic state as a function of the gate
voltage Vg and the bias ∆V across the molecular junction, both in units of ~ω0/e. The dots in the central column indicate the
even (a) and odd (b) parity transitions described in Fig. 3.

mγω, where γ is the damping coefficient [17]. Along the
same lines as for the tunneling term we find

(Ldamp σ)
11

= − iγ

2~
[x, {p, σ11}] −

−γmω0

~
(N̄ + 1

2
)[x, [x, σ11]] ,

(Ldamp σ)ττ ′

00
= − iγ

2~
Pτ [x, {p, σττ ′

00 }]Pτ ′ − (9)

−γmω0

~
(N̄ + 1

2
)Pτ [x, [x, σττ ′

00 ]]Pτ ′ −

−8γ
kBT

~ω0

λ2(P+ σττ ′

00 P− + P− σττ ′

00 P+) ,

where N̄(ω) is the Bose distribution function. Note the
occurence of a term responsible for pure inter-well de-
phasing and proportional to T and λ2 in the expression
for (Ldamp σ)

00
. Since we are interested in the long-time

properties, we look for solutions of the stationary prob-
lem Lσstat = 0. Given the stationary RDM σstat we
calculate the stationary current as the trace over the sys-
tem degrees of freedom of the left/right current opera-
tors, Istat =Trmech[σ

statÎL]=Trmech[σ
statÎR] , with, e.g.,

ÎL =
∑

τ=±

[

2|0〉〈0|(Pτ ΓL
in + ΓL

in

† Pτ )−

− |1〉〈1|(Pτ ΓL
out + ΓL

out

† Pτ )
]

.

(10)

We stress that not only populations but also coherences
of the RDM in the (±) basis contribute to Istat.

In the first column of Fig. 2 we present the results of
our calculation of the gate- and bias-dependent current
for increasing temperature (from bottom to top). Besides
the evidence of a Franck-Condon blockade [7, 8] (where
due to an exponential suppression of the Franck-Condon
factors 〈m|n, τ〉 transport is blocked and the Coulomb
diamonds no longer close), Fig. 2 shows an increasing
asymmetry in the gate voltage Vg with decreasing tem-
perature. To understand the origin of this asymmetry,
we depict in the second and third column of Fig. 2 the
parities of the neutral and anionic state defined as

P0 =

N
∑

n=0

[

〈0, e, n|σ|0, e, n〉 − 〈0, o, n|σ|0, o, n〉
]

, (11)

P1 =

∞
∑

n=0

[

〈1, 2n|σ|1, 2n〉 − 〈1, 2n + 1|σ|1, 2n + 1〉
]

,

where the even/odd states of the neutral molecule are

|0, e/o, n〉 =
1√
2
(|n, +〉 ± (−1)n|n,−〉) . (12)

In the parameter region where the current becomes asym-
metric with respect to Vg, degenerate states are differ-

ently populated, i.e., a dynamical symmetry breaking
(DSB) in the occupation of the even/odd states occurs.
In the regions of defined parity (warm colors for even,
cold for odd) the system exhibits spatial coherences in
the (±) basis, cf. Eqs. (8),(9). In contrast, we find that in



4

the even/odd basis coherences are decoupled from pop-
ulations and vanish for the stationary density matrix.
The onset of this even/odd parity regions in the gate-
bias voltage plane can be understood in terms of transi-
tion rates between the different vibrational states of the
molecule (see Fig. 3). At zero bias, energy conservation
prevents any transition from the neutral (even or odd)
or anionic ground states to occur. These states are thus
blocking states. In particular for positive gate voltages
the molecule is neutral and dephasing ensures equilibra-
tion of the even and odd populations of the degenerate
ground state (P0 = 0). At negative gate voltages the
molecule is charged and dissipation ensures relaxation
predominantly to the anionic ground state (P1 ≈ 1).

The situation changes for combinations of bias and
gate voltages that allow current to flow: the electrome-
chanical system is maintained out of equilibrium by the
applied voltage. Now the parity of the anionic state fluc-
tuates due to population of the higher excited states, and
the distribution of the populations no longer corresponds
to the thermal distribution in equilibrium with the bath.

The sign of the neutral-state parity depends on the
particular rate configuration. Though a quantitative pre-
diction relies on the solution for σstat, it is possible to un-
derstand the sign of the neutral state parity with simple
arguments. In Fig. 3 a representation of the electrome-
chanical rates for two specific cases is reported. Despite
the complexity of the scheme, only few lines are cru-
cial: these are the two red dashed arrows representing
the rates which lift the blocking character of the neutral
ground states. In the case (a) the neutral odd ground
state can be depopulated resulting in an even parity of
the stationary state. In case (b) the neutral even ground
state is involved leading to an odd parity of the stationary
state. These unblocking rates represent the bottle-neck
in the DSB and are competing with the dephasing gen-
erated by the heat bath (wavy line joining the even and
odd sector of the neutral state). The intensity of the un-
blocking rates depends on the Franck-Condon factors of
the vibrational wave functions involved. A comparison
with the dephasing rate allows to estimate the transition
temperature Ttr as kBTtr = ~ω0Γub/(4λ2γ) , where Γub

is the unblocking rate (i.e. the depopulation rate of the
relevant neutral ground state). The even transition (a)
involves a larger Γub: it is more robust and occurs at
higher T (compare first and second panel in the central
column of Fig. 2).

To summarize, we analyzed the dynamics of a molecu-
lar junction in the single-electron transport regime. The
molecule possesses quasi-degenerate vibrational eigen-
states in the neutral configuration and no degeneracy
in the anionic case. Tunneling processes charging and
discharging the molecule preserve the parity of the wave-
functions. As a consequence, unequal occupation of de-
generate molecular neutral states occurs. An explanation
of this effect in terms of unblocking rates is given. We
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FIG. 3: (color online) Rates scheme at the even (a) and odd
(b) transition points (see Fig. 2). The horizontal lines mark
the electromechanical states of the neutral and anionic con-
figuration with green (blue) color representing the even (odd)
parity. Straight arrows represent transitions due to the cou-
pling to the leads: the rate is qualitatively expressed by the
thickness of the line. Red dashed arrows show transitions lift-
ing the blocking character of the ground states and are crucial
for the understanding of the symmetry breaking transition.
Wavy arrows represent the effect of the phononic bath.
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