5 research outputs found

    Farmers as data sources: Cooperative framework for mapping soil properties for permanent crops in South Tyrol (Northern Italy)

    Get PDF
    Abstract Detailed knowledge of agricultural soil properties is a key element for high-quality food production. However, high-resolution soil data covering a large agricultural region are generally unavailable. This study explores a demand-driven cooperative framework for soil data sourcing that connects individual farmers to several stakeholders by means of a centralised database containing more than 16,000 records of soil information collected within the framework of an integrated production program for intensively managed permanent crops in the Adige/Etsch and Venosta/Vinschgau valleys in South Tyrol, Italy. Data for soil pH, soil organic matter (SOM), and soil texture were used to produce digital soil maps with a RMSE of 0.21, 1.25% and a cross-validation of 43%, respectively. Spatialisation was conducted using either regression-kriging or multinomial logistic regression. Collaboration among farmers, public administrators, and researchers provided a successful cooperative framework for digital soil mapping. The maps highlight the complex interplay of the postglacial evolution of these valleys due to the presence of a cluster of large alluvial fans and the anthropogenic influences of intense farming on pH, SOM, and soil texture. This study regarded a subset of the available soil properties, which can be dealt with using the geostatistical approaches presented herein. Thus, a long-term soil monitoring program and the combination of all available variables will allow digital assessment of the spatial patterns of nutrient availability, ecological risk assessments, change detection studies, and an overall long-term plan for soil security at larger spatial scales

    Linking viticultural climatic indices to grape phenology in the South Tyrolean Alps

    No full text
    Climate indices based on heat accumulation, e.g. the Winkler index, are widely used to define the climatic niches for vines. In this study, we investigate how a combined use of high-resolution (25 m) climate index maps and phenology records from 30 vineyards in South Tyrol (in the Italian Alps) can help to (i) assess viticultural suitability across a mountainous landscape and (ii) estimate the timing of physiological processes of Pinot Noir development (ripening and must weight) at various sites across the region. First, the best interpolation method is chosen (from multiple linear regression (MLR), regression kriging or support vector regression) to create maps of climate indices averaged over the time period 1991-2010. Second, correlation is calculated between the timing of phenological stages of Pinot Noir for the year 2017 and various climate indicators, such as temperature-based indices (Winkler, Huglin, Biologically Active Degree Days, Cool Night, Fregoni) and average (GST), minimum and maximum temperature over the growing season. The MLR method is shown to yield the best interpolations of the climate indices across the complex terrain of the study area. The Winkler and GST indices correlate most precisely with the late-season phenological events of the study sites, and are thus the most predictive. These findings demonstrate the potential of climatic maps to effectively define suitable areas for grape growing and estimate ripening dates in South Tyrol

    Upward shifts in elevation – a winning strategy for mountain viticulture in the context of climate change?

    No full text
    The advent of global climate change has major impacts upon viticultural production. Changes in the spatial limits of wine production are already being observed around the globe; vineyards are now viable at higher elevations and more polar latitudes. Climatic conditions are also threatening production in existing appellations. Therefore, sound management strategies are vital to maintain high-quality wines and varietal typicity, and to respond to changing market conditions. In mountainous regions such as the European Alps, new production areas at higher elevations are increasingly considered to be a promising solution. However, the suitability of viticulture in general, and even specific varieties of wine grapes, can change drastically across short distances in complex mountain terrain. Variations in temperature and radiation accumulation directly influence plant suitability, yield quantity, and quality. This paper shares initial findings from the REBECKA Project, a transnational research initiative designed to assess the impacts of climate change on mountain viticulture and wine quality in South Tyrol (Italy) and Carinthia (Austria). A three-part approach is utilized to better assess these dynamics: (1) historical crop yield data from local vineyards are assessed, (2) plant phenology stages and polyphenolic compounds of the Pinot Noir variety are analyzed along an elevation gradient and related to bioclimatic indices, and (3) a suitability map is developed that considers small-scale topographic and agro-environmental conditions. Taken together, these components contribute in clarifying many of the opportunities and threats facing high altitude viticulture in a changing world and provide new insights for sound decision-making in alpine vineyards

    Upward shifts in elevation – a winning strategy for mountain viticulture in the context of climate change?

    No full text
    The advent of global climate change has major impacts upon viticultural production. Changes in the spatial limits of wine production are already being observed around the globe; vineyards are now viable at higher elevations and more polar latitudes. Climatic conditions are also threatening production in existing appellations. Therefore, sound management strategies are vital to maintain high-quality wines and varietal typicity, and to respond to changing market conditions. In mountainous regions such as the European Alps, new production areas at higher elevations are increasingly considered to be a promising solution. However, the suitability of viticulture in general, and even specific varieties of wine grapes, can change drastically across short distances in complex mountain terrain. Variations in temperature and radiation accumulation directly influence plant suitability, yield quantity, and quality. This paper shares initial findings from the REBECKA Project, a transnational research initiative designed to assess the impacts of climate change on mountain viticulture and wine quality in South Tyrol (Italy) and Carinthia (Austria). A three-part approach is utilized to better assess these dynamics: (1) historical crop yield data from local vineyards are assessed, (2) plant phenology stages and polyphenolic compounds of the Pinot Noir variety are analyzed along an elevation gradient and related to bioclimatic indices, and (3) a suitability map is developed that considers small-scale topographic and agro-environmental conditions. Taken together, these components contribute in clarifying many of the opportunities and threats facing high altitude viticulture in a changing world and provide new insights for sound decision-making in alpine vineyards

    Cloud and Precipitation Profiling Radars: The First Combined W- and K-Band Radar Profiler Measurements in Italy

    No full text
    Clouds cover substantial parts of the Earth’s surface and they are one of the most essential components of the global climate system impacting the Earth’s radiation balance as well as the water cycle redistributing water around the globe as precipitation. Therefore, continuous observation of clouds is of primary interest in climate and hydrological studies. This work documents the first efforts in Italy in remote sensing clouds and precipitation using a combination of K- and W-band (24 and 94 GHz, respectively) radar profilers. Such a dual-frequency radar configuration has not been widely used yet, but it could catch on in the near future given its lower initial cost and ease of deployment for commercially available systems at 24 GHz, with respect to more established configurations. A field campaign running at the Casale Calore observatory at the University of L’Aquila, Italy, nestled in the Apennine mountain range is described. The campaign features are preceded by a review of the literature and the underpinning theoretical background that might help newcomers, especially in the Italian community, to approach cloud and precipitation remote sensing. This activity takes place in interesting time for radar sensing clouds and precipitation, stimulated both by the launch of the ESA/JAXA EarthCARE satellite missions scheduled in 2024, which will have on-board, among other instruments, a W-band Doppler cloud radar and the proposal of new missions using cloud radars currently undergoing their feasibility studies (e.g., WIVERN and AOS in Europe and Canada, and U.S., respectively)
    corecore