11 research outputs found
Collision sellar lesions: experience with eight cases and review of the literature
The concomitant presence of a pituitary adenoma with a second sellar lesion in patients operated upon for pituitary adenoma is an uncommon entity. Although rare, quite a great variety of lesions have been indentified coexisting with pituitary adenomas. In fact, most combinations have been described before, but an overview with information on the frequency of combined pathologies in a large series has not been published. We present a series of eight collision sellar lesions indentified among 548 transsphenoidally resected pituitary adenomas in two Neurosurgical Departments. The histological studies confirmed a case of sarcoidosis within a non-functioning pituitary adenoma, a case of intrasellar schwannoma coexisting with growth hormone (GH) secreting adenoma, two Rathke’s cleft cysts combined with pituitary adenomas, three gangliocytomas associated with GH-secreting adenomas, and a case of a double pituitary adenoma. The pertinent literature is discussed with emphasis on pathogenetic theories of dual sellar lesions. Although there is no direct evidence to confirm the pathogenetic relationship of collision sellar lesions, the number of cases presented in literature makes the theory of an incidental occurrence rather doubtful. Suggested hypotheses about a common embryonic origin or a potential interaction between pituitary adenomas and the immune system are presented
Recommended from our members
Bone marrow stromal cells for repair of the spinal cord: towards clinical application
Stem cells have been recognized and intensively studied for their potential use in restorative approaches for degenerative diseases and traumatic injuries. In the central nervous system (CNS), stem cell-based strategies have been proposed to replace lost neurons in degenerative diseases such as Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis (Lou Gehrig's disease), or to replace lost oligodendrocytes in demyelinating diseases such as multiple sclerosis. Stem cells have also been implicated in repair of the adult spinal cord. An impact to the spinal cord results in immediate damage to tissue including blood vessels, causing loss of neurons, astrocytes, and oligodendrocytes. In time, more tissue nearby or away from the injury site is lost due to secondary injury. In case of relatively minor damage to the cord some return of function can be observed, but in most cases the neurological loss is permanent. This review will focus on in vitro and in vivo studies on the use of bone marrow stromal cells (BMSCs), a heterogeneous cell population that includes mesenchymal stem cells, for repair of the spinal cord in experimental injury models and their potential for human application. To optimally benefit from BMSCs for repair of the spinal cord it is imperative to develop in vitro techniques that will generate the desired cell type and/or a large enough number for in vivo transplantation approaches. We will also assess the potential and possible pitfalls for use of BMSCs in humans and ongoing clinical trials
Recommended from our members
Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord
Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue sparing and BMSC survival up to 4 weeks post-transplantation. BMSC survival within the contusion at 7 days post-transplantation was significantly higher with an acute injection (32%) and 3-day delayed injection (52%) than with a 7- or 21-day delayed injection (9% both; p < 0.01). BMSC survival at 28 days post-transplantation was close to 0 in all paradigms, indicating rejection. In contused rats without a BMSC transplant (controls), the volume of spared tissue gradually decreased until 46% (p < 0.001) of the volume of a comparable uninjured spinal cord segment at 49 days post-injury. In rats with BMSC, injected at 15 min, 3, or 7 days post-injury, spared tissue volume was significantly higher in grafted rats than in control rats at the respective endpoints (i.e., 28, 31, and 35 days post-injury). Acute and 3-day delayed but not 7- and 21-day delayed injection of BMSC significantly improved tissue sparing, which was strongly correlated (r = 0.79-1.0) to BMSC survival in the first week after injection into the contusion. Our data showed that neuroprotective effects of BMSC transplanted into a moderate rat spinal cord contusion depend strongly on their survival during the first week post-injection. Acutely injected BMSC elicit more tissue sparing than delayed injected BMSC
Safety and efficacy of a novel polyethylene glycol hydrogel sealant for watertight dural repair
OBJECT: The authors prospectively evaluated the safety and efficacy of a novel polyethylene glycol (PEG) hydrogel sealant in patients undergoing elective cranial surgery with documented cerebrospinal fluid (CSF) leakage after sutured dural repair. METHODS: The PEG hydrogel sealant was used at 11 different study sites in 111 patients with documented intraoperative CSF leakage after neurosurgical dural repair for a variety of conditions. Intraoperative CSF leakage was either spontaneous or induced by a Valsalva maneuver. Patients were monitored for 3 months postoperatively with physical examinations, clinical laboratory analyses, and diagnostic imaging. The PEG hydrogel sealant was 100% effective in stopping CSF leakage in all patients. There were no sealant-related adverse events and all clinical outcomes were consistent with expectations for seriously ill patients undergoing prolonged neurosurgical procedures. CONCLUSIONS: The PEG hydrogel sealant provides a safe and effective watertight closure when used as an adjunct to sutured dural repair during cranial surgery
Positron emission tomography for serial imaging of the contused adult rat spinal cord.
Item does not contain fulltextWe investigated whether small-animal positron emission tomography (PET) could be used in combination with computed tomography (CT) imaging techniques for longitudinal monitoring of the injured spinal cord. In adult female Sprague-Dawley rats (n = 6), the ninth thoracic (T9) spinal cord segment was exposed by laminectomy and subsequently contused using the Infinite Horizon impactor (Precision System and Instrumentation, Lexington, KY) at 225 kDyn. In control rats (n = 4), the T9 spinal cord was exposed by laminectomy but not contused. At 0.5 hours and 3, 7, and 21 days postinjury, 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) was given intravenously followed 1 hour later by sequential PET and CT. Regions of interest (ROIs) at T9 (contused) and T6 (uninjured) spinal cord segments were manually defined on CT images and aided by fiduciary markers superimposed onto the coregistered PET images. Monte Carlo simulation revealed that about 33% of the activity in the ROIs was due to spillover from adjacent hot areas. A simulation-based partial-volume compensation (PVC) method was developed and used to correct for this spillover effect. With PET-CT, combined with PVC, we were able to serially measure standardized uptake values of the T9 and T6 spinal cord segments and reveal small, but significant, differences. This approach may become a tool to assess the efficacy of spinal cord repair strategies.1 april 201
Flow diversion treatment for acutely ruptured aneurysms
BACKGROUND AND PURPOSE: Flow diverters are sometimes used in the setting of acutely ruptured aneurysms. However, thromboembolic and hemorrhagic complications are feared and evidence regarding safety is limited. Therefore, in this multicenter study we evaluated complications, clinical, and angiographic outcomes of patients treated with a flow diverter for acutely ruptured aneurysms.
METHODS: We conducted a retrospective observational study of 44 consecutive patients who underwent flow diverter treatment within 15 days after rupture of an intracranial aneurysm at six centers. The primary end point was good clinical outcome, defined as modified Rankin Scale score (mRS) 0-2. Secondary endpoints were procedure-related complications and complete aneurysm occlusion at follow-up.
RESULTS: At follow-up (median 3.4 months) 20 patients (45%) had a good clinical outcome. In 20 patients (45%), 25 procedure-related complications occurred. These resulted in permanent neurologic deficits in 12 patients (27%). In 5 patients (11%) aneurysm re-rupture occurred. Eight patients died resulting in an all-cause mortality rate of 18%. Procedure-related complications were associated with a poor clinical outcome (mRS 3-6; OR 5.1(95% CI 1.0 to 24.9), p=0.04). Large aneurysms were prone to re-rupture with rebleed rates of 60% (3/5) vs 5% (2/39) (p=0.01) for aneurysms with a size \u3e /=20 mm and \u3c 20 mm, respectively. Follow-up angiography in 29 patients (median 9.7 months) showed complete aneurysm occlusion in 27 (93%).
CONCLUSION: Flow diverter treatment of ruptured intracranial aneurysms was associated with high rates of procedure-related complications including aneurysm re-ruptures. Complications were associated with poor clinical outcome. In patients with available angiographic follow-up, a high occlusion rate was observed
Long-term complications and definition of failure of neuroendoscopic procedures.
Contains fulltext :
57538.pdf (publisher's version ) (Closed access)OBJECTS: A lot has been published about neuroendoscopic procedures over the last decade. Most of these publications are about the effectiveness of endoscopic third ventriculostomy, the most frequently performed neuroendoscopic procedure. Little is published about the effectiveness of other, less frequently performed neuroendoscopic procedures. Over the years more reports about the complications of endoscopic procedures are published, but again most of these publications are about endoscopic third ventriculostomy and only a little is presented about the complications of all other neuroendoscopic procedures. Furthermore, most reports are about intraoperative and immediate postoperative complications; only a few reports evaluated the long-term complications of neuroendoscopic procedures. There are also a few publications that analyse the failures of neuroendoscopic procedures but a good definition of failure is not given. The reports mention, again, mainly endoscopic third ventriculostomy procedures, and are mostly directed at the short-term failure rates, defined as the need for a shunt to be placed. Less attention is paid to the effects of the endoscopic procedures in the longer term. Looking at longer terms emphasises the need for a better definition of failure. METHODS: To get more insight into the long-term complications and failures of neuroendoscopic procedures, we reviewed the literature and evaluated our own series of 485 different cranial endoscopic procedures. With the information gathered we tried to answer the questions mentioned above. CONCLUSIONS: Most of the complications of neuroendoscopic procedures are transient, either spontaneously or by medical intervention. Only a few permanent complications are known, in our series 1.6%, and most of them are not typically related to the endoscopic procedure itself but are due to the ventricular approach necessary for and the management of the endoscopy. Mortality rates are less than 1%. A uniform definition of failure cannot be given for all neuroendoscopic procedures, because the procedures are too heterogeneous and the indications are widespread. Failures are mainly diagnosed within a few months of the procedure but neurosurgeons must be aware of failure in the longer term, because if not diagnosed they can give rise to increased morbidity and probably mortality