517 research outputs found

    Temperature Sensitivity of Silicon Cantilevers with the Pull-in Instability Method

    Get PDF
    AbstractIn this paper the temperature effects on [110] Silicon cantilevers is analyzed and measured in the range of 25 -100 °C. The quasi-static electrostatic pull-in instability method developed recently for ultra-thin cantilevers [“Characterizing Size-dependent Effective Elastic Modulus of Silicon Nanocantilevers Using Electrostatic Pull-in Instability”, Applied Physics Letters, Vol. 94(22), p. 221903, 2009] is employed to measure the temperature sensitivity of ultra-thin cantilevers. A temperature sensitivity of 81.3 °C/V is obtained. The temperature sensitivity is mostly due to the temperature dependence of the effective Young’s Modulus of silicon. It is shown that changes in geometrical dimensions due to the change in temperature can be neglected. The changes in the effective Young’s Modulus due to the changes in temperature are extracted using an electromechanical-coupled system. The pull-in method showed substantial advantages over other methods used for the study of the thermal effects on micron and sub-micron structures. The results demonstrate a new concept for a temperature sensor with ultra high sensitivity

    Sensitive and Reversible Detection of Methanol and Water Vapor by In Situ Electrochemically Grown CuBTC MOFs on Interdigitated Electrodes

    No full text
    The in situ electrochemical growth of Cu benzene-1,3,5-tricarboxylate (CuBTC) metal-organic frameworks, as an affinity layer, directly on custom-fabricated Cu interdigitated electrodes (IDEs) is described, acting as a transducer. Crystalline 5-7 μm thick CuBTC layers are grown on IDEs consisting of 100 electrodes with a width and a gap of both 50 μm and a height of 6-8 μm. These capacitive sensors are exposed to methanol and water vapor at 30 °C. The affinities show to be completely reversible with higher affinity toward water compared to methanol. For exposure to 1000 ppm methanol, a fast response is observed with a capacitance change of 5.57 pF at equilibrium. The capacitance increases in time followed diffusion-controlled kinetics (k = 2.9 mmol s-0.5 g-1 CuBTC). The observed capacitance change with methanol concentration follows a Langmuir adsorption isotherm, with a value for the equilibrium affinity Ke = 174.8 bar-1. A volume fraction fMeOH = 0.038 is occupied upon exposure to 1000 ppm of methanol. The thin CuBTC affinity layer on the Cu-IDEs shows fast, reversible, and sensitive responses to methanol and water vapor, enabling quantitative detection in the range of 100-8000 ppm
    • …
    corecore