155 research outputs found

    Renormalization of Wilson Operators in the Light-Cone Gauge

    Full text link
    We test the renormalization of Wilson operators and the Mandelstam- Leibbrandt gauge in the case when the sides of the loop are parallel to the n, n* vectors used in the M-L gauge. Graphs which in the Feynman gauge are free of ultra-violet divergences, in the M-L gauge show double divergences and single divergences with non-local Si and Ci functions. These non-local functions cancel out when we add all graphs together and the constraints of gauge invariance are satisfied. In Appendix C we briefly discuss the problems of the M-L gauge for loops containing spacelike lines.Comment: plain tex, 18 pages, 20 figures, revise

    Some Observations on Non-covariant Gauges and the epsilon-term

    Full text link
    We consider the Lagrangian path-integrals in Minkowski space for gauges with a residual gauge-invariance. From rather elementary considerations, we demonstrate the necessity of inclusion of an epsilon-term (even) in the formal treatments, without which one may reach incorrect conclusions. We show, further, that the epsilon-term can contribute to the BRST WT-identities in a nontrivial way (even as epsilon-->0). We also show that the (expectation value of the) correct epsilon-term satisfies an algebraic condition. We show by considering (a commonly used) example of a simple local quadratic epsilon -term, that they lead to additional constraints on Green's function that are not normally taken into account in the BRST formalism that ignores the epsilon-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that for a subclass of these gauges, the Minkowski path-integral could not be obtained by a Wick rotation from a Euclidean path-integral.Comment: 12 pages, LaTeX2

    Development and Validation of Non-Integrative, Self-Limited, and Replicating Minicircles for Safe Reporter Gene Imaging of Cell-Based Therapies

    Get PDF
    Reporter gene (RG) imaging of cell-based therapies provides a direct readout of therapeutic efficacy by assessing the fate of implanted cells. To permit long-term cellular imaging, RGs are traditionally required to be integrated into the cellular genome. This poses a potential safety risk and regulatory bottleneck for clinical translation as integration can lead to cellular transformation. To address this issue, we have developed non-integrative, replicating minicircles (MCs) as an alternative platform for safer monitoring of cells in living subjects. We developed both plasmids and minicircles containing the scaffold/matrix attachment regions (S/MAR) of the human interferon-beta gene, driven by the CMV promoter, and expressing the bioluminescence RG firefly luciferase. Constructs were transfected into breast cancer cells, and expanded S/MAR minicircle clones showed luciferase signal for greater than 3 months in culture and minicircles remained as episomes. Importantly, luciferase activity in clonal populations was slowly lost over time and this corresponded to a loss of episome, providing a way to reversibly label cells. To monitor cell proliferation in vivo, 1.5×10(6) cells carrying the S/MAR minicircle were implanted subcutaneously into mice (n = 5) and as tumors developed significantly more bioluminescence signal was noted at day 35 and 43 compared to day 7 post-implant (p<0.05). To our knowledge, this is the first work examining the use of episomal, self-limited, replicating minicircles to track the proliferation of cells using non-invasive imaging in living subjects. Continued development of S/MAR minicircles will provide a broadly applicable vector platform amenable with any of the numerous RG technologies available to allow therapeutic cell fate to be assessed in individual patients, and to achieve this without the need to manipulate the cell's genome so that safety concerns are minimized. This will lead to safe tools to assess treatment response at earlier time points and improve the precision of cell-based therapies.The authors would like to acknowledge the imaging support provided by the Stanford Small Animal Imaging FacilityPublicad

    Canonical Quantisation in n.A=0 gauges

    Full text link
    We give a unified derivation of the propagator in the gauges n.A=0n.A=0 for n2n^2 timelike, spacelike or lightlike. We discuss the physical states and other physical questions.Comment: 7 pages, DAMTP 93-33, ITP-SB-93-3

    On the connection between Hamilton and Lagrange formalism in Quantum Field Theory

    Full text link
    The connection between the Hamilton and the standard Lagrange formalism is established for a generic Quantum Field Theory with vanishing vacuum expectation values of the fundamental fields. The Effective Actions in both formalisms are the same if and only if the fundamental fields and the momentum fields are related by the stationarity condition. These momentum fields in general differ from the canonical fields as defined via the Effective Action. By means of functional methods a systematic procedure is presented to identify the full correlation functions, which depend on the momentum fields, as functionals of those usually appearing in the standard Lagrange formalism. Whereas Lagrange correlation functions can be decomposed into tree diagrams the decomposition of Hamilton correlation functions involves loop corrections similar to those arising in n-particle effective actions. To demonstrate the method we derive for theories with linearized interactions the propagators of composite auxiliary fields and the ones of the fundamental degrees of freedom. The formalism is then utilized in the case of Coulomb gauge Yang-Mills theory for which the relations between the two-point correlation functions of the transversal and longitudinal components of the conjugate momentum to the ones of the gauge field are given.Comment: 25 pages, 24 figures, revised and extended version with an explicit application of the formalism to Coulomb gauge QC
    • …
    corecore