4,173 research outputs found

    Tactical Voting in Plurality Elections

    Get PDF
    How often will elections end in landslides? What is the probability for a head-to-head race? Analyzing ballot results from several large countries rather anomalous and yet unexplained distributions have been observed. We identify tactical voting as the driving ingredient for the anomalies and introduce a model to study its effect on plurality elections, characterized by the relative strength of the feedback from polls and the pairwise interaction between individuals in the society. With this model it becomes possible to explain the polarization of votes between two candidates, understand the small margin of victories frequently observed for different elections, and analyze the polls' impact in American, Canadian, and Brazilian ballots. Moreover, the model reproduces, quantitatively, the distribution of votes obtained in the Brazilian mayor elections with two, three, and four candidates.Comment: 7 pages, 4 figure

    Direct evidence for charge stripes in a layered cobalt oxide

    Get PDF
    Recent experiments indicate that static stripe-like charge order is generic to the hole-doped copper oxide superconductors and competes with superconductivity. Here we show that a similar type of charge order is present in La5/3 Sr1/3 CoO4 , an insulating analogue of the copper oxide superconductors containing cobalt in place of copper. The stripe phase we have detected is accompanied by short-range, quasi-one-dimensional, antiferromagnetic order, and provides a natural explanation for the distinctive hour- glass shape of the magnetic spectrum previously observed in neutron scattering mea- surements of La2−xSrx CoO4 and many hole-doped copper oxide superconductors. The results establish a solid empirical basis for theories of the hourglass spectrum built on short-range, quasi-static, stripe correlations

    Particle separation in surface acoustic wave microfluidic devices using reprogrammable, pseudo-standing waves

    Get PDF
    We report size and density/compressibility-based particle sorting using on-off quasi-standing waves based on the frequency difference between two ultrasonic transducers. The 13.3 MHz fundamental operating frequency of the surface acoustic wave microfluidic device allows the manipulation of particles on the micrometer scale. Experiments, validated by computational fluid dynamics, were carried out to demonstrate size-based sorting of 5–14.5 lm diameter polystyrene (PS) particles and density/compressibility-based sorting of 10 lm PS, iron-oxide, and poly(methyl methacrylate) particles, with densities ranging from 1.05 to 1.5 g/cm3 . The method shows a sorting efficiency of >90% and a purity of >80% for particle separation of 10 lm and 14.5 lm, demonstrating better performance than similar sorting methods recently published (72%–83% efficiency). The sorting technique demonstrates high selectivity separation of particles, with the smallest particle ratio being 1.33, compared to 2.5 in previous work. Density/compressibility-based sorting of polystyrene and iron-oxide particles showed an efficiency of 97 6 4% and a purity of 91 6 5%. By varying the sign of the acoustic excitation signal, continuous batch acoustic sorting of target particles to a desired outlet was demonstrated with good sorting stability against variations of the inflow rate

    Gravitational energy of a magnetized Schwarzschild black hole - a teleparallel approach

    Full text link
    We investigate the distribution of gravitational energy on the spacetime of a Schwarzschild black hole immersed in a cosmic magnetic field. This is done in the context of the {\it Teleparallel Equivalent of General Relativity}, which is an alternative geometrical formulation of General Relativity, where gravity is describe by a spacetime endowed with torsion, rather than curvature, with the fundamental field variables being tetrads. We calculate the energy enclosed by a two-surface of constant radius - in particular, the energy enclosed by the event horizon of the black hole. In this case we find that the magnetic field has the effect of increasing the gravitational energy as compared to the vacuum Schwarzschild case. We also compute the energy (i) in the weak magnetic field limit, (ii) in the limit of vanishing magnetic field, and (iii) in the absence of the black hole. In all cases our results are consistent with what should be expected on physical grounds.Comment: version to match the one to be published on General Relativity and Gravitatio

    Gauss-Bonnet Black Holes and Heavy Fermion Metals

    Full text link
    We consider charged black holes in Einstein-Gauss-Bonnet Gravity with Lifshitz boundary conditions. We find that this class of models can reproduce the anomalous specific heat of condensed matter systems exhibiting non-Fermi-liquid behaviour at low temperatures. We find that the temperature dependence of the Sommerfeld ratio is sensitive to the choice of Gauss-Bonnet coupling parameter for a given value of the Lifshitz scaling parameter. We propose that this class of models is dual to a class of models of non-Fermi-liquid systems proposed by Castro-Neto et.al.Comment: 17 pages, 6 figures, pdfLatex; small corrections to figure 10 in this versio

    No chiral truncation of quantum log gravity?

    Get PDF
    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.Comment: 20 pages, no figures, references adde

    Holography For a De Sitter-Esque Geometry

    Full text link
    Warped dS3_3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/ℓ2+1/\ell^2 and Chern-Simons coefficient 1/ÎŒ1/\mu in the region ÎŒ2ℓ2<27\mu^2 \ell^2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3_3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when ÎŒ2ℓ2=27/5\mu^2 \ell^2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.Comment: 22 pages, 1 figure; v2: typos corrected, to match with published versio
    • 

    corecore