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1 Introduction

It was recently proposed [1] that a 2+1 dimensional theory known as chiral gravity could be

defined at the quantum level, providing an interesting yet perhaps exactly solvable model

of both quantum gravity and the anti-de Sitter/Conformal Field Theory (AdS/CFT) cor-

respondence [2–4]. In particular, it was suggested that chiral gravity is dual to an extremal

chiral CFT, and further supporting evidence was provided in [5]. This situation contrasts

with that of pure gravity, where an exact CFT dual has not yet been understood [6–8].

On the other hand, extremal CFT’s with large central charges have not been con-

structed, and it has been argued that they do not exist [9]. Our goal is to investigate this

tension by taking a brief first look at the quantum theory. Because chiral gravity bound-

ary conditions remove the local propagating degree of freedom that would otherwise arise,

one might be suspicious that the dynamics of this theory are ill-defined. However, at the

classical level chiral gravity may be defined as the truncation of a larger theory, called log

gravity, to the sector defined by requiring certain charges to vanish [5]. Conservation of the

charges then implies consistency of this truncation. Log gravity is described by the same

action, but with boundary conditions that allow the expected local degree of freedom. The

asymptotic symmetry group of log gravity contains two Virasoro algebras, and one arrives

at chiral gravity when the left-moving charges vanish. Log gravity may itself be defined as

the limit of topologically massive gravity (TMG) at a special value of the coupling known

as the chiral point.

Below, we investigate the situation at the level of linearized quantum fields. As we

briefly discuss in section 4.2, a non-unitary quantization of linearized log gravity reproduces

the classical story and leads to a unitary theory of chiral gravity. However, this approach
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can succeed at higher orders in perturbation theory only if certain ghost-modes continue

to decouple in an appropriate way. In addition, since there appears to be a sensible (if

unstable) classical theory of log gravity, one would expect the physics of log gravity to be

better captured by a unitary quantization of the the log gravity theory.

For these reasons we focus on a unitary quantization of log gravity below. We construct

the quantum theory using a unitary quantization of TMG away from the chiral point

and taking an appropriate limit. While the Hilbert space and right-moving charges are

continuous at the chiral point, the left-moving charges become ill-defined. In a sense, the

left-moving symmetries are spontaneously broken at the chiral point. As a result, they

cannot be used to define a chiral truncation.

After reviewing the classical theory of anti-de Sitter topologically massive gravity and

computing the symplectic structure in section 2, we discuss the unitary quantum theory in

section 3. This section shows that the Hilbert space defined by our unitary quantization

of TMG is continuous at the chiral point. The quantum charges are studied in section 4

for both unitary and non-unitary quantizations. We close with some discussion of open

questions in section 5.

2 Preliminaries and notation

Chiral gravity is a special case of Topologically Massive Gravity (TMG) with negative cos-

mological constant (TMG) [10–12] defined by a certain relation between coupling constants

and a particular choice of boundary conditions. We begin by reviewing this basic setting.

As noted in the introduction, we will benefit from a unified perspective taking into account

all values of the coupling.

The TMG action is

I =
1

16πG

[
∫

d3x
√−g(R− 2Λ) + ICS

]

, (2.1)

where ICS is the gravitational Chern-Simons term

ICS =
1

2µ

∫

d3x
√−gǫαβγΓρ

ασ

[

∂βΓσ
ργ +

2

3
Γσ

βλΓλ
γσ

]

. (2.2)

Our conventions for the curvature and the Levi-Civita symbol are Rα
βµν = ∂µΓα

βν + · · ·
and ǫρtφ = +1 respectively. The theory is power counting renormalizable [13].

Since (2.2) is parity odd, we may choose µ > 0 without loss of generality. We are inter-

ested in linear perturbations around AdS3, whose line element in global coordinates reads:

ds2 = ḡµνdx
µdxν = l2(dρ2 − cosh2 ρdt2 + sinh2 ρdφ2). (2.3)

The metric (2.3) is a stationary point of (2.1) for Λ = −1/l2. From now on, we take l = 1

unless otherwise specified.

The discussion for µ = 1 is somewhat subtle, so we first consider µ 6= 1. In this case

one imposes the Brown-Henneaux boundary conditions (BHBCs) described in [14] for pure
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Einstein-Hilbert gravity. BHBCs admit an asymptotic symmetry group generated by the

vector fields

ξn = iein(t+φ)

{

− in
2
∂ρ +

[

1

2
− n2e−2ρ

]

∂t +

[

1

2
+ n2e−2ρ

]

∂φ

}

+ ξgauge, (2.4)

ξ̄n = iein(t−φ)

{

− in
2
∂ρ +

[

1

2
− n2e−2ρ

]

∂t −
[

1

2
+ n2e−2ρ

]

∂φ

}

+ ξgauge, (2.5)

where ξgauge falls off rapidly enough at infinity that it defines a gauge transformation;1 i.e.

ξgauge = O(e−8ρ)∂ρ + O(e−4ρ)∂t + O(e−4ρ)∂φ . (2.6)

We will refer to (2.4) and (2.5) as left and right symmetries henceforth. These vector fields

satisfy the Witt algebra

[ξn, ξm] = (n−m)ξn+m [ξ̄n, ξ̄m] = (n −m)ξ̄n+m. (2.7)

For n = 0,±1, the vector fields (2.4) and (2.5) generate the SL(2, R)L×SL(2, R)R isometry

group of AdS3. Below, we use the notation Li, L̄j for Lie derivatives along ξi, ξ̄j, where the

terms ξgauge are chosen to make all ξi smooth. The charges associated with (2.4) and (2.5)

(which we also call Ln and L̄n) satisfy the Virasoro central extension of (2.7) with central

charges [15, 16]

cL =
3

2G

(

1 − 1

µ

)

cR =
3

2G

(

1 +
1

µ

)

. (2.8)

We now review the linearized modes following [1, 17]. These modes may be classified

using the SL(2, R)L×SL(2, R)R symmetry of the background. The three SL(2, R) primaries

with their left and right conformal weights are:

ΨL (2, 0) ΨR (0, 2) ΨM

(

3

2
+
µ

2
,−1

2
+
µ

2

)

. (2.9)

The explicit wave functions can be found in [1]. It suffices for our purposes here to say that

their t and φ dependence occurs only through complex exponentials. The descendants are

obtained by acting on (2.9) with L−1 and L̄−1. Thus the modes of this theory are uniquely

specified by three labels:

Ψαᾱ
A = Lα

−1L̄
ᾱ
−1ΨA, (2.10)

where the index A runs over the three primaries, A ∈ {L,R,M}. A complete set of so-

lutions obeying BHBCs consists of (2.9), their descendants and complex conjugates. This

is consistent with the analysis made independently in [18] where it is shown that the only

propagating degree of freedom corresponds to a single scalar. For later use, we record the

fact that the Virasoro descendants of AdS3 take the form

L−αḡ ≈ 3

(α− 2)!
Ψ

(α−2)
L , L̄−ᾱḡ ≈

3

(ᾱ− 2)!
Ψ

(ᾱ−2)
R , (2.11)

1By gauge transformation, we mean a degenerate direction of the symplectic structure; see section 2.1.
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where ḡ represents AdS3 and ≈ indicates equality up to pure gauge modes. This fact

follows by direct calculation for α = 2 and thence from the algebraic relation L−α =
1

α−2 [L−1, L−(α−1)] or the equivalent for the right-moving charges.

One sees from (2.8) that the limit µ → 1 is special since cL → 0. In addition, it

turns out [1] that ΨL − ΨM → 0 as µ → 1, as suggested by the fact that their conformal

weights (2.9) coincide in this limit. The basis given by (2.9) and their descendants must

therefore be supplemented [17] by another linearly independent mode:

Ψlog ≡ lim
µ→1

ΨM(µ) − ΨL

µ− 1
= (−it− log(cosh ρ))ΨL. (2.12)

As emphasized in [17], Ψlog has a qualitatively different behavior than that of the primaries,

since its time dependence is not exponential and it grows as log ρ for large ρ. Non-linear

configurations exhibiting such ‘logarithmic’ behavior at the chiral point were found previ-

ously in [19, 20]. This means that Ψlog does not satisfy BHBCs. The µ = 1 theory with

BHBCs (and thus without the mode Ψlog) is called chiral gravity.

However, one can consistently relax BHBCs to so-called log boundary conditions to

accommodate Ψlog [5, 21, 22]. The log boundary conditions again lead to classical charges

generating two copies of the Virasoro algebra, which are just the µ → 1 limit of those

for µ 6= 1. The resulting theory is called log gravity. It turns out that Ψlog is not an

eigenstate of either L0 or L̄0, and so is not strictly-speaking a primary. As noted in [17],

Ψlog is properly referred to as a “log-primary” in the language of log-CFT’s [23], see [24]

and [25] for reviews. For µ = 1, a general solution obeying the log-boundary conditions

consists of an arbitrary linear combination of ΨL, ΨR, Ψlog and their SL(2, R) descendants.2

See [27] for an independent analysis of the propagating degrees of freedom at the chiral

point and [28] for more on the relationship between log gravity and log CFT’s.

As discussed in [5, 29], chiral gravity may also be defined as the truncation of log

gravity to the sector in which the left-moving charges Ln vanish. While the log gravity

Hamiltonian is unbounded below, it has been argued [5] that the constraints Ln = 0 render

this Hamilton positive definite. This was definitively established at the linearized level at

which we work here.

Because chiral gravity boundary conditions remove the local propagating degree of free-

dom that would otherwise arise, one might a priori be suspicious that the dynamics of this

theory are ill-defined. Defining chiral gravity as the above truncation of log gravity removes

this concern at the classical level. It is therefore of interest to learn whether a similar trunca-

tion is possible at the quantum level. At least for a natural unitary quantization of log grav-

ity, we show in section 4 that the quantum construction fails in the linearized approxima-

tion. On the other hand, it succeeds in this approximation for a non-unitary quantization.

2.1 The symplectic structure

Our goal is to examine the quantum constraints defined by the left-moving charges Ln at

the chiral point. To do so, we must first quantize the theory. This will be done in section 3

2The descendants Ψαᾱ

log of Ψlog are slightly subtle. The logarithmic tail of Ψαᾱ

log for (α, ᾱ) 6= (0, 0) can be

removed by a gauge transformation at the linearized level [26]. However, this is no longer true at second

order in perturbation theory, where they violate BHBCs [5].
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below, where we use an operator method based on the covariant phase space formalism.

An important ingredient will be the symplectic structure, which we now compute.

The symplectic structure is defined as follows. Given a Lagrangian density L(φ), where

φ denotes an arbitrary collection of fields, we consider a small deformation δ1φ away from

a background configuration φ̄. This variation can always be written δ1L ≈ ∇µθ
µ(δ1φ, φ̄),

where ≈ denotes equivalence on-shell. We now consider another independent variation δ2φ

and define the symplectic current

ωµ(δ1φ, δ2φ; φ̄) =
1√−g

(

δ2θ
µ(δ1φ, φ̄) − δ1θ

µ(δ2φ, φ̄)
)

, (2.13)

which is conserved ∇µω
µ = 0 when φ̄+δ1φ and φ̄+δ2φ solve the equations of motion. Fur-

thermore, if the symplectic flux through the boundary vanishes by the boundary conditions,

then the integral

Ω(δ1φ, δ2φ; φ̄) =

∫

Σ
nµω

µ(δ1φ, δ2φ; φ̄) (2.14)

is independent of the choice of the space-like surface Σ. In (2.13), the integral uses the

volume measure on Σ. We refer to Ω as the symplectic structure of the theory. See [30] for

a detailed construction.

Given two complex linearized solutions ϕ1, ϕ2, it is convenient to replace Ω by the

Hermitian (but not positive definite) inner product

(ϕ1, ϕ2) = −i Ω(ϕ1, ϕ
∗
2). (2.15)

This product allows us to define some useful terminology. We use the convention that a pos-

itive frequency mode is a normal particle/ghost if its symplectic norm is positive/negative,

with the opposite convention for negative frequency modes. In addition, a mode is pure

gauge if it has vanishing symplectic product with all modes, so that it defines a degenerate

direction of Ω. After moding out by these null directions, one may invert the symplectic

structure to define a Poisson bracket for gauge invariant functions on the space of solutions.

For the action (2.1) around the AdS background, we find the symplectic current,

ων
TMG = ων

EH + ων
CS, (2.16)

where

ων
EH =

1

16πG

[

δ2(
√
ggαβ)δ1Γ

ν
αβ − δ2(

√
ggνα)δ1Γ

β
αβ

]

− (1 ↔ 2) (2.17)

ων
CS =

1

32πGµ
ǫναβ [δ1Γ

λ
σαδ2Γ

σ
λβ − 2δ1gασG(1)(δ2g)

σ
β] − (1 ↔ 2), (2.18)

and where as in [5] the symbol G(1)σ
β denotes the linearization of the tensor Gσ

β − 1
ℓ2
gσ
β

describing the equation of motion for µ = ∞. When evaluated around the pure AdS3

background (2.3), the symplectic structure leads to the norms:

(ΨL,ΨL) =
1

8G

2(µ− 1)

3µ
(ΨR,ΨR) =

1

8G

2(µ+ 1)

3µ
(ΨM ,ΨM ) =

1

8G

1 − µ2

µ(µ+ 2)
, (2.19)
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where we remind the reader that we assume µ > 0. In addition, all cross terms vanish:

(ΨA,ΨB) = 0 for A 6= B. Note that ΨL is a ghost for µ < 1 while ΨM is a ghost for

µ > 1, though otherwise we have normal (non-ghost) particles. As usual, the ghosts carry

negative energy and lead to perturbative instabilities. For the special case µ = 1 the norm

of ΨL = ΨM vanishes. Below, it will often be convenient to focus on the non-degenerate

case µ > 1. Similar results hold for µ < 1 with different choices of signs, and we will

carefully take the limit µ→ 1. We stress that all modes ΨL,ΨR,ΨM are normalizable with

respect to (2.16) for all µ without the addition of further boundary terms.

In computing the inner products of descendents, it is useful to note that the inner

product is invariant under AdS3 isometries in the sense that

(ϕ1, Liϕ2) = (L−iϕ1, ϕ2) (2.20)

for i = −1, 0, 1 and similarly for L̄i. The various signs in (2.20) follow from our conventions

for the vector fields (2.4), (2.5). One may use (2.19) and (2.20) to show that the descendants

have inner products

(Ψαᾱ
A ,Ψββ̄

B ) = δαβδᾱβ̄α!ᾱ!P (2hA, α)P (2h̄A, ᾱ)(ΨA,ΨB), (2.21)

where (hA, h̄A) are the conformal weights of the primary ΨA and P (a, b) is the Pochhammer

symbol, defined through P (a, b) = a(a + 1)(a + 2) . . . (a + b − 1) for b ∈ Z. Note that in

particular P (a, 0) = 1, P (0, b) = 0. Using (2.21), it is not hard to see that the descendants

Ψαᾱ
L and Ψββ̄

R are pure gauge for ᾱ > 0 and β > 0 respectively. As a result, the physical

modes of TMG for µ > 1 are:

Ψα
L , Ψᾱ

R , Ψα
M , Ψαᾱ

M , (2.22)

where we have defined Ψα
L ≡ Ψα0

L , Ψᾱ
R ≡ Ψ0ᾱ

R and Ψα
M ≡ Ψα0

M , and we have separated Ψαᾱ
M

for ᾱ = 0 and ᾱ > 0 for future convenience. In our notation, the presence of an explicit ᾱ

in Ψαᾱ
M indicates that ᾱ > 0 unless otherwise noted (though the same is not true for α). As

mentioned above, both Ψα
L and Ψᾱ

R define normal particles while Ψα
M and Ψαᾱ

M are ghosts.

It is therefore convenient to define normalized fields

Ψ̃α
L(µ) = N−1

L (µ, α)Ψα
L Ψ̃ᾱ

R(µ) = N−1
R (µ, ᾱ)Ψᾱ

R

Ψ̃α
M(µ) = N−1

M (µ, α)Ψα
M Ψ̃αᾱ

M (µ) = N−1
M (µ, α, ᾱ)Ψαᾱ

M (2.23)

where

N2
L(µ, α) = (Ψα

L,Ψ
α
L) N2

R(µ, ᾱ) = (Ψᾱ
R,Ψ

ᾱ
R)

N2
M (µ, α) = −(Ψα

M ,Ψ
α
M ) N2

M (µ, α, ᾱ) = −(Ψαᾱ
M ,Ψαᾱ

M ). (2.24)

Hence the fields decorated with a tilde have norm +1 if they are descendants of ΨL,R and

−1 if they are descendants of ΨM , with all cross products equal to zero.

In much the same way, for µ = 1 we may take the physical modes of log gravity to be

Ψ̂α
L = N−1

L (α)Ψα
L Ψ̂ᾱ

R = N−1
R (ᾱ)Ψᾱ

R Ψ̂α
log = N−1

n (α)Ψα
log Ψ̂αᾱ

log = N−1
GKP(α, ᾱ)Ψαᾱ

log,

(2.25)
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where

NL(α) =
α!(α + 3)!

72G
N−1

log (α) N2
R(ᾱ) =

2

72G
ᾱ!(ᾱ + 3)!

N2
log(α) =

α!(α + 3)!

216G
(3H(α + 3) − 5) N2

GKP(α, ᾱ) =
1

72G
α!ᾱ!(ᾱ− 1)!(α + 3)!, (2.26)

where H(α) =
∑α

k=1
1
k is the harmonic number. The symplectic products involving

Ψ̂α
log, Ψ̂

α,ᾱ
log can either be calculated directly from the wave functions, or by using (2.12)

and the results for µ > 1. In either case one finds

(Ψ̂ᾱ
R, Ψ̂

β̄
R) = δᾱβ̄ (Ψ̂α

log, Ψ̂
β
L) = −δαβ (Ψ̂α

log, Ψ̂
β
log) = −δαβ (Ψ̂αᾱ

log, Ψ̂
ββ̄
log) = −δαβδᾱβ̄, (2.27)

with all other products vanishing. In particular, (Ψ̂α
L, Ψ̂

β
L) = 0. The normalized fields

for µ = 1 were decorated with a hat (instead of with a tilde), to distinguish them from

the limits of the tilded fields for µ > 1, in particular we have limµ→1 Ψ̃αᾱ
M = Ψ̂αᾱ

M , but

limµ→1 Ψ̃L 6= Ψ̂L.

A few comments on (2.27) are in order. First, we emphasize that the products involving

Ψlog are finite, so Ψlog is indeed a normalizable mode with respect to (2.16). Second, we

see that Ψlog has negative norm. We therefore refer to Ψlog as a ghost.3 This might

be expected from the fact [17] that Ψlog is known to carry negative energy, though the

connection is not direct due to the complicated time-dependence. Finally, despite the fact

that ΨL has vanishing norm, this mode cannot be discarded as pure gauge since it has

non-zero symplectic product with Ψlog.

3 The linearized unitary quantum theory

With the results from section 2 in hand, we are ready to quantize linearized TMG; see

also [31, 32] for other studies of quantum Topologically Massive Gravity. We first analyze

the case µ > 1 and then study the log gravity limit µ→ 1.

The standard procedure for an operator quantization is to expand the general linear

solution in some basis of modes. The coefficients of these modes are quantum operators

whose commutation relations are determined by the symplectic structure. One then uses

these operators to define a vacuum state, in the sense of a state with no particles, and

thence an entire Fock space. Note that for TMG the Hamiltonian is unbounded below for

all µ, so that minimizing the energy does not lead to any preferred notion of vacuum state.

The above procedure is most familiar in the case where the modes diagonalize the

symplectic structure, though the presence of ghosts brings certain subtleties. For example,

a mode expansion of the form Ψ = b†ψ + bψ∗ with (ψ,ψ) = ±1 leads to [b, b†] = ±1 [33].

Recall that, at the level of the mode expansion, it is merely a matter of convention which

coefficient is called b and which is called b†. However it is useful to choose a convention

which will lead to familiar expressions in the associated construction of a Fock space. To

3Here we abuse the terminology somewhat. Due to the logarithmic behavior, Ψlog is not strictly-speaking

a positive frequency mode. However, it is useful to think of it as being effectively so since it is the limit of

positive frequency modes for µ > 1.
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this end, we rename (b, b†) as either (a, a†) or (a†, a) in such a way that the operator a will

annihilate the desired vacuum state |0〉. In order that a†|0〉 have positive norm, we must

take b = a, b† = a† for (ψ,ψ) = 1, but b = a†, b† = a for (ψ,ψ) = −1. The resulting Fock

space then defines a unitary quantization of the theory. Note that this discussion applies

regardless of whether ψ is a positive frequency mode, a negative frequency mode, or of

indeterminate frequency. We shall use this rule when defining our mode expansion below.

On the other hand, for ghost modes like Ψ̃M (for µ > 1), there is a different conven-

tion that might also have been considered natural. Following the convention for normal

particles, one might take the coefficient of the positive frequency mode Ψ̃M to be a†M,NU

and that of the negative frequency mode Ψ̃∗
M to be aM,NU . However, this would lead to

[aM,NU , a
†
M,NU ] = −1. As a result, the Fock space defined over a vacuum that satisfies

aM,NU |0〉 = 0 would contain negative norm states. Indeed, it is clear that making such

a choice for any of the ghosts leads to a non-unitary quantization — thus the subscript

NU on a†M,NU above. However we reserve the term the non-unitary quantization for the

quantization scheme in which all the positive frequency modes are associated with creation

operators (when at least one of them is a ghost). In the reminder of this section, we con-

sider only unitary quantization schemes for log gravity and TMG, saving discussion of the

non-unitary scheme for section 4.2.

For µ = 1, the modes described in section 2 do not diagonalize the symplectic structure

(see 2.27). As a result, while one may consider the associated mode expansion

Ψ =
∑

α=0

[â†LαΨ̂α
L + a†logαΨ̂α

log] +
∑

α=0

∑

ᾱ=1

aMαᾱΨ̂αᾱ
log +

∑

ᾱ=0

a†RᾱΨ̂ᾱ
R + h.c., (3.1)

it is not immediately clear how to use âLα, alogα, aMαᾱ and their adjoints to define a

useful (unitary) vacuum.4 One needs to first diagonalize the symplectic structure and then

apply the rule above. We will do so below in a way that demonstrates the continuity of

the unitary quantization scheme at µ = 1. In particular, though log gravity is often said

to be non-unitary, we describe a unitary quantization below. In (3.1), the hat on â†Lα

distinguishes this operator from another similar operator that will be greater use below.

3.1 A family of vacuum states

We begin with the case µ > 1, where it is natural to expand in a basis of modes with

well-defined conformal weights; i.e., in the basis (2.22). Following the convention described

above for a unitary quantization scheme, we have

Ψ =
∑

α=0

[a†LαΨ̃α
L(µ) + aMαΨ̃α

M (µ)] +
∑

α=0

∑

ᾱ=1

aMαᾱΨ̃αᾱ
M (µ) +

∑

ᾱ=0

a†RᾱΨ̃ᾱ
R(µ) + h.c. (3.2)

Using this mode expansion, one may define a state |0〉conf
µ annihilated by aLα, aRα, aMαᾱ.

We refer to this state as the conformal vacuum, as it will turn out to be annihilated by all

quantum charges Ln, L̄n for n ≥ −1.

4In fact, since (Ψα

L,Ψ
α

log) 6= 0, it is not clear whether there is any advantage to refering to coefficients of

these modes as a or a† in the mode expansion, but we make the choices above.

– 8 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
9

However, due to the fact that (3.2) degenerates as µ → 1, the conformal vacuum be-

comes singular in this limit. Indeed, the two-point function defined by (3.2) becomes a

sum of divergent terms due to the normalization factors (2.24) used to defined the tilded-

fields (2.23). More definitively, one may note that since gauge transformations are degen-

erate directions of the symplectic structure, the operator Ω(Ψ,Ψlogα) is gauge invariant

and satisfies

µ〈0|Ω(Ψ,Ψα
log)[Ω(Ψβ

log,Ψ)]†|0〉µ =
α!P (4, α)

12Gµ(µ − 1)
δαβ, (3.3)

In (3.3) we have defined Ψα
log(µ) = 1

µ−1 (Ψα
M−Ψα

L) for µ 6= 1, which of course gives just (2.12)

as µ→ 1.

As a result, to find a construction of the TMG Hilbert space that is continuous at µ = 1

it will be useful to consider linear combinations that mix Ψα
L and Ψα

M . For simplicity we su-

perpose only modes with the same value of α. It is also useful to keep the symplectic struc-

ture diagonal. Since the matrix of symplectic products in the basis Ψ̃α
M , Ψ̃β

L, takes the form

(Ψ̃α
A, Ψ̃

β
B) =

(

−1 0

0 1

)

, (3.4)

we consider modes χα
1 , χ

α
2 , given by

(

χα
1 (µ)

χα
2 (µ)

)

≡ Sα(µ)

(

Ψ̃α
M

Ψ̃α
L

)

, (3.5)

where

Sα(µ) =

(

cosh y − sinh y

− sinh y cosh y

)

(3.6)

is an Sp(2) transformation and y carries the dependence on α and µ. We could also include

reflections of the form diag(−1, 1) in (3.6), but this does not add anything interesting. A

unitary quantization corresponds to taking the annihilation operators to be the coefficients

of χα
1 (µ) and ψ̃αᾱ

M (µ), and the creation operators to be coefficients of χα
2 (µ) and Ψ̃ᾱ

R(µ) in

the mode expansion. Note that each function yα(µ) defines a vacuum |0〉µ for each µ. In

order for |0〉µ to define the same Hilbert space as |0〉conf
µ , we must have [34]

∑

α

sinh2 y <∞, (3.7)

so that in particular lim
α→∞

yα(µ) = 0. We have already remarked that |0〉µ cannot be a

state of minimum energy, since the energy is unbounded below. However, we also warn

the reader that, because the modes χα
1 , χ

α
2 contain superpositions of positive and negative

frequencies, the vacuum |0〉µ will not even be an energy eigenstate.

We are now ready to study the limit µ → 1. To do so, we need a class of yα(µ) for

which the modes (3.5) are continuous in µ and, in particular, define non-degenerate linear

combinations of ΨL and Ψlog that diagonalize Ω at µ = 1. Choosing y(α, µ) itself to be

continuous at µ = 1 does not achieve our goal. This would simply give a linear combination
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of the modes ΨL,ΨM and their descendants, while these modes are known to degenerate

for µ = 1. However, a simple choice of Sα(µ) that satisfies these requirements is

e2yα(µ) = 1 +
8γ(α)

µ− 1
, when

γ(α+ 1)

γ(α)
→ 0. (3.8)

In fact, inserting (3.8) into (3.6) and expanding in powers of (µ− 1), we obtain

χα
1 (µ = 1) = eq(α)Ψ̂α

log − sinh q(α)Ψ̂α
L,

χα
2 (µ = 1) = −eq(α)Ψ̂α

log + cosh q(α)Ψ̂α
L, (3.9)

where

eq(α) =

√

γ(α)

3γ1(α)
, γ1(α) =

1

2(−5 + 3H(α + 3))
. (3.10)

Note that γ1(α) > 0 for all α ≥ 0. Using (2.27), we can readily check that (χα
i (µ =

1), χβ
j (µ = 1)) = δijδ

αβ(−1)j as desired.

The remaining modes behave very simply as µ→ 1. It is manifest that ΨR is continuous

at µ = 1. This leaves only Ψ̃αᾱ
M (µ) for which, after a gauge transformation, the µ→ 1 limit

turns out to be just Ψ̂αᾱ
log. This is most easily seen by writing

Ψ̃αᾱ
M (µ) ≈

[

µ− 1

NM (α, ᾱ, µ)

]

(Ψαᾱ
M (µ) − Ψαᾱ

L )

µ− 1
= Ψ̂αᾱ

log + O(µ− 1), (3.11)

where ≈ means equality up to pure gauge modes (and we have used the fact that Ψαᾱ
L is

pure gauge for all µ). Thus, as desired, χα
1 , χ

α
2 ,Ψ

α
R,Ψ

αᾱ
M and their complex conjugates form

a complete set of modes which is continuous at µ = 1, at least up to gauge transformations.

In our unitary quantization scheme, the mode expansion reads5

Ψ =
∑

α=0

[a1αχ
α
1 (µ) + a†2αχ

α
2 (µ)] +

∑

α=0

∑

ᾱ=1

aMαᾱΨ̃αᾱ
M (µ) +

∑

ᾱ

a†RᾱΨ̃ᾱ
R(µ) + h.c. (3.12)

=
∑

α=0

[a1αχ
α
1 (1)+a†2αχ

α
2 (1)]+

∑

α=0

∑

ᾱ=1

aMαᾱΨ̂αᾱ
log+

∑

ᾱ=0

a†RᾱΨ̂ᾱ
R +h.c. +O(µ−1), (3.13)

where we see from (3.1) and (3.9) that for µ = 1 we have

a1α = cosh q(α)a†logα + eq(α)a†Lα a2α = sinh q(α)alogα + eq(α)aLα. (3.14)

Since the algebra defined by a1α, a2α, aMαᾱ, aRᾱ and their adjoints is the same for all µ,

one may think of the operators as being µ-independent; all of the µ dependence is carried

by the modes.

We now turn to the vacuum state |0〉µ annihilated by a1α, a2α, aMαᾱ, aRᾱ. Since the

modes themselves are continuous (up to gauge transformations), all gauge-invariant corre-

lation functions at separated points are also continuous at µ = 1. In this sense the vacuum

|0〉µ is itself continuous at µ = 1. Again, we remind the reader that such continuity does

not hold for the conformal vacuum defined by (3.2), though the latter is a highest-weight

state. As for |0〉µ when µ > 1, the µ → 1 limit is not a state of minimum energy and will

not even be an energy eigenstate, much less a highest weight state.

5It is maybe clearer to refer to the coefficient of the modes Ψ̂αᾱ

log as alog or a3 for µ = 1 despite the fact

that they are the µ→ 1 limit of aMαᾱ.
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4 Charges and constraints

As discussed above, our unitary quantization scheme defines a vacuum state (and thus an

entire TMG Hilbert space) that is continuous at µ = 1. There we take it to define a unitary

quantization of log gravity. While the right-moving charges L̄n and most of the left-moving

charges Ln are also continuous, we will find in section 4.1 below that L±1 are not. Indeed,

their action on |0〉µ diverges as µ → 1. In contrast, section 4.2 shows that all charges are

continuous in the non-unitary quantization.

4.1 Virasoro charges

At the classical level, one may build conserved charges directly from the symplectic struc-

ture. In general, given a vector field ξ, the infinitesimal difference between the associated

charges of solutions φ̄ and φ̄+ δφ is

δ1Qξ = Ω(δ1φ, (Lξφ̄)∗; φ̄). (4.1)

In the linearized theory, one may hold the background φ̄ fixed once and for all. If Lξφ̄ =

0, (4.1) can then be integrated to yield a quadratic expression in δφ:

Qξ(δ1φ) =
1

2
Ω(δ1φ, (Lξδ1φ)∗; φ̄). (4.2)

On the other hand, if ξ = ξasympt is not an exact symmetry of φ̄ but only an asymptotic

symmetry, the conserved charge in the linearized theory is just

Qξ(δ1φ) = Ω(δ1φ, (Lξasympt
φ̄)∗; φ̄). (4.3)

At the quantum level, we promote (4.2) and (4.3) to operators by expressing them in

terms of the coefficients of our mode expansion. Of course, one must choose an appro-

priate ordering of operators. In making this choice, one wishes to preserve the classical

symmetries. This means that the charges should be conserved, should satisfy the Vira-

soro algebra, and should be invariant under the discrete symmetry Ψ → −Ψ. In terms of

the mode expansion (3.2) associated with the conformal vacuum for µ > 1, it is sufficient

to simply normal-order the classical expression (4.2) and to replace δ1φ by the linearized

quantum field Ψ in (4.3); i.e., we have

L̄0 =
∑

ᾱ=0

(2 + ᾱ)a†RᾱaRᾱ −
∑

α=0

∑

ᾱ=0

(

− 1

2
+
µ

2
+ ᾱ

)

a†MαᾱaMαᾱ, (4.4)

L̄−1 =
∑

ᾱ=0

√

(ᾱ+ 1)(ᾱ + 4)a†R(ᾱ+1)aRᾱ (4.5)

−
∑

α=0

∑

ᾱ=0

√

(ᾱ+ 1)(−1 + µ+ ᾱ)a†MαᾱaMα(ᾱ+1),

L̄ᾱ =
3

(ᾱ− 2)!
NR(ᾱ− 2, µ)aR(ᾱ−2), for ᾱ ≥ 2 (4.6)

L0 =
∑

α=0

(2 + α)a†LαaLα −
∑

α=0

∑

ᾱ=0

(

3

2
+
µ

2
+ α

)

a†MαᾱaMαᾱ, (4.7)
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L−1 =
∑

α=0

√

(α+ 1)(α + 4)a†L(α+1)aLα (4.8)

−
∑

α=0

∑

ᾱ=0

√

(α+ 1)(3 + µ+ α)a†MαᾱaM(α+1)ᾱ,

Lα =
3

(α− 2)!
NL(α− 2, µ)aL(α−2), for α ≥ 2, (4.9)

with the other charges determined by L−α = L†
α.

In particular, the algebra forbids us from adding further c-number constants. The

success of normal ordering (without additional c-number terms) can be shown to follow

from the fact that each creation or annihilation operator appearing in (4.4), (4.5) has a

well-defined conformal weight greater than 1/2. We note for future reference that although

the quadratic operators are represented as sums over an infinite number of modes, these

sums converge converge in the Hilbert space norm when the operators act on a Fock space

state an the appropriate domain. We take this domain to include the dense linear sub-

space Φconf defined by the conformal vacuum and all states obtained from it by adding

a finite number of particles. The choice of vacuum thus defines a regulator that gives

meaning to any potentially ill-defined expressions arising from these infinite sums. Expres-

sions (4.4), (4.5), (4.7), (4.8) and their adjoints satisfy the SL(2, R) algebra in this sense.

The larger Virasoro algebra also holds, with the caveat that since in this approximation

the Virasoro charges Lα, L̄ᾱ for |α| ≥ 1 are linear in the fields, the commutator of two such

charges gives us only the central charge term (2.8) in the Virasoro algebra.

However, as noted earlier, the conformal vacuum |0〉conf (and thus the entire space

Φconf) becomes singular at µ = 1. To study the µ → 1 limit, we should thus use a

different dense linear space Φ associated with the vacuum |0〉µ defined by some yα(µ) as

in section 3 and including the states obtained from it by acting with a finite number of

creation operators from the mode expansion (3.12). Using

aLα = − sinh yα a
†
1α + cosh yα a2α, aMα = cosh yα a1α − sinh yαa

†
2α, (4.10)

one may verify that for µ > 1 the action of (4.4- 4.6) on |0〉µ is well-defined so long as

yα(µ) → 0 fast enough as α → ∞; e.g., if (3.8) holds. In fact, they are well-defined on all

of Φ. The results of such calculations are summarized by writing the charges in terms of

the mode expansion (3.12) as follows. The right-moving SL(2, R) charges are given by

L̄0 =
∑

ᾱ=0

(2 + ᾱ)a†RᾱaRᾱ −
∑

α=0

∑

ᾱ=1

(

1

2
− µ

2
+ ᾱ

)

a†MαᾱaMαᾱ

−1

2
(µ− 1)

∑

α=0

{

cosh2 y a†1αa1α + sinh2 y a†1αa1α

− cosh y sinh y(a†1αa
†
2α + a1αa2α)

}

+ C̄0

L̄−1 = −(µ− 1)1/2
∑

α=0

aMα1(cosh ya
†
1α − sinh ya2α)

−
∑

α=0

∑

ᾱ=1

√

(α+ 1)(−1 + µ+ α)a†MαᾱaM(α+1)ᾱ (4.11)

– 12 –



J
H
E
P
0
3
(
2
0
1
0
)
0
2
9

+
∑

ᾱ=0

√

(ᾱ+ 1)(ᾱ + 4)a†R(ᾱ+1)aRᾱ (4.12)

and their adjoints, where

C̄0 = −(µ− 1)

2

∑

α=0

sinh2 y. (4.13)

In contrast, since our Sp(2) transformation does not act on the modes ΨRᾱ, the higher

right-moving Virasoro charges are unchanged. Finally, the left-moving charges become

L0(µ) =
∑

α=0

{

a†1αa1α(hα
L sinh2 y − hα

M cosh2 y) + a†2αa2α(hα
L cosh2 y − hα

M sinh2 y)

+(a1αa2α + a†1αa
†
2α) sinh y cosh y(hα

M − hα
L)

}

−
∑

α=0

∑

ᾱ=1

(

3

2
+
µ

2
+ α

)

a†MαᾱaMαᾱ +C0

L−1(µ) =
1

2

∑

α=0

{

A−−(µ, α)a†1αa1(α+1) +A++(µ, α)a†2(α+1)a2α +A+−(µ, α)a2αa1(α+1)

+A−+(µ, α)a†1αa
†

2(α+1)

}

−
∑

α=0

∑

ᾱ=1

√

(α+ 1)(α + 3 + µ)a†MαᾱaM(α+1)ᾱ

Lα =
3

(α− 2)!
NL(α− 2, µ)

{

cosh[yα−2(µ)]a2(α−2) − sinh[yα−2(µ)]a†1(α−2)

}

. (4.14)

and their adjoints, where hα
L = 2 + α hα

M = 3
2 + µ

2 + α, C0 = C̄0, and

Aij(µ, α) = 2(−1)ij(α+ 1)1/2

×
(

(2hL + α)1/2fi(yα)fj(yα+1) − (2hM + α)1/2f−i(yα)f−j(yα+1)
)

(4.15)

for i, j ∈ {−,+}, f−(y) = sinh(y), f+(y) = cosh(y). Finiteness for µ > 1 follows from

the fact that (4.18) converges absolutely and, since (3.8) requires yα to vanish faster than

any exponential at large α, from the fact that the coefficient of each term involving only

creation operators includes sinh yα . Note that due to the terms of the form a†1αa
†
2α in

L0, L̄0, our vacuum |0〉µ is not an eigenstate of either generator, nor of the energy L0 + L̄0,

though it is a state of zero angular momentum: (L0−L̄0)|0〉µ = 0. This structure may seem

somewhat artificial for generic µ, but is an intrinsic property of log-gravity since for µ = 1

it is impossible to diagonalize the action of L0 on the space of linearized solutions. Indeed,

this property was noted in [17] and used there to suggest a connection with logarithmic

CFTs [23], see [24] and [25] for reviews.

It is now straightforward to take the limit µ → 1. Using (3.8), one finds that all

coefficients in (4.12) are finite. The non-trivial results are

L̄0(µ = 1) =
∑

ᾱ=0

(2 + ᾱ)a†RᾱaRᾱ −
∑

α=0

∑

ᾱ=1

ᾱa†MαᾱaMαᾱ −
∑

α=0

γ(α)

{

a†1αa1α

+a†1αa1α − a†1αa
†
2α − a1αa2α

}

+ C̄0
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L̄−1(µ = 1) = −
∑

α=0

(2γ(α))1/2aMα1(a
†
1α − a2α)

−
∑

α=0

∑

ᾱ=1

√

α(α + 1)a†MαᾱaM(α+1)ᾱ

+
∑

ᾱ=0

√

(ᾱ+ 1)(ᾱ+ 4)a†
R(ᾱ+1)

aRᾱ (4.16)

L0(µ = 1) =
∑

α=0

{

− (2 + α+ γ(α))a†1αa1α + (2 + α− γ(α))a†2αa2α

+γ(α)(a1αa2α + a†1αa
†
2α)

}

−
∑

α=0

∑

ᾱ=1

(2 + α)a†MαᾱaMαᾱ + C0 ,

L−1(µ = 1) =
1

2

∑

α=0

{

A−−(α)a†1αa1(α+1) +A++(α)a†2(α+1)a2α +A+−(α)a2αa1(α+1)

+A−+(α)a†1αa
†

2(α+1)

}

−
∑

α=0

∑

ᾱ=1

√

(α + 1)(α + 3)a†MαᾱaM(α+1)ᾱ,

Lα =

[

α(α2 − 1)γ(α − 2)

4G

]1/2

(a2α − a†1α) for α ≥ 2. (4.17)

where

C̄0 = C0 = −
∑

α=0

γ(α) (4.18)

and

Aij(α) =

[

(α+ 1)(α + 4)

γ(α+ 1)γ(α)

]1/2 [

(−1)jγ(α+ 1) + (−1)iγ(α) − 2
(−1)ijγ(α+ 1)γ(α)

α+ 4

]

.

For most of the above charges, acting on |0〉µ continues to give a normalizable state

in this limit. However, the norm of L±1|0〉 diverges as µ→ 1 as can be seen from the fact

that the 2nd term in the coefficient A−+, of the a†1αa
†

2(α+1) terms in L−1 now grows with

α when γ(α) vanishes rapidly as α → ∞. The same is true for the analogous coefficient

A+− in L1. As a result, the µ = 1 Hilbert space that defines our unitary quantization of

log gravity appears to carry a representation of only the right-moving Virasoro algebra.

Taking γ → 0 more slowly is not helpful, as one can show that A−+ → 0 implies that γ

approaches a non-zero constant at large α.

Note that, at the linearized level, the action of charges on the field operators is just

the same as in the classical theory and so remains well-defined as µ → 1. In this sense,

the theory retains the left-moving Virasoro symmetry, though the symmetry is broken

at the level of the Hilbert space. Symmetries of this sort are typically referred to as

“spontaneously broken,” though as discussed in section 5 the fact that our case features

spontaneous breaking of an asymptotic symmetry makes it somewhat different from more

familiar cases of spontaneous symmetry breaking.

4.2 The non-unitary quantization

Although our main focus is on unitary quantizations of TMG and log gravity, we now

briefly discuss the situation for the non-unitary quantization. This treatment largely co-
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incides with that of [35] and may be considered a review. As noted in section 3, here one

takes creation operators to be the coefficients of positive frequency modes and annihilation

operators to be the coefficients of negative frequency modes in any expansion where each

mode has a well-defined sign of the frequency. One then defines a vacuum state |0〉NU
µ which

is annihilated by the annihilation operators and uses the creation operators to build a Fock

space which, in the presence of ghosts, will contain negative-norm states. The details of the

mode expansion do not affect the definition of |0〉NU
µ , since any two allowed mode expansions

are related by a transformation that maps creation operators to sums of creation operators

and similarly for annihilation operators. For µ = 1 one may safely classify the mode Ψlog

as a positive-frequency mode since it is the limit of positive-frequency modes for µ > 1.

The above invariance under changes of the mode expansion means that, while for

µ > 0 it is most natural to use a basis of modes with well-defined conformal weights given

by (2.22) and their conjugates, and while this expansion degenerates at µ = 1, the cor-

responding vacuum state |0〉NU
µ remains continuous at µ = 1. There it coincides with the

non-unitary vacuum defined by (2.25) and their conjugates. This continuity, combined

with the well-defined conformal weights of (2.22) for µ > 1, makes for a simple analysis.

The right- and left-moving charges take a form that is essentially that of (4.4 - 4.9) with

appropriate re-definitions of creation and annihilation operators. In particular, it now suf-

fices to take the quadratic operators to be normal-ordered with respect to the non-unitary

creation/annihilation operators without adding any additional c-number terms.6 As a re-

sult, one finds L†
i |0〉NU

µ = 0, L̄†
i |0〉NU

µ = 0 for all quadratic charges (i = −1, 0, 1) for all µ.

The higher charges with i ≥ 2 also annihilate the vacuum, and the charges with i ≤ −2

yield one-particle states with coefficients proportional to NL, NR. No problems arise in the

limit µ→ 1.

It is thus straightforward to truncate the non-unitary µ = 1 theory using the left-

moving charges. In particular, one may impose the constraints

Li|ψ〉 = 0 (4.19)

for7 i ≥ −1. A natural space of solutions is given by the vacuum |0〉NU
µ and all n-particle

states built by acting with all polynomials in creation and annihilation operators that

commute with Li. Here it is useful to note that due to (2.11) and (2.27), the higher

Virasoro charges (4.3) for µ = 1 take the form

Lα = −
√

3α(α2 − 1)

4G
γ1(α− 2) alog(α−2), and (4.20)

L−α = −
√

3α(α2 − 1)

4G
γ1(α− 2) a†log(α−2), (4.21)

6Note that this is not equivalent to simply rewriting (4.4 - 4.9) in terms of the non-unitary creation and

annihilation operators. For example, the two definitions of L0 differ by an infinite ordering constant. The

point here is that each Hilbert space defines a different notion in which the relevant mode sums should

converge, and that these notions are not equivalent.
7It appears that similar constraints for i ≤ −2 have no solutions in the non-unitary Hilbert space. This

contrasts with the situation in the unitary Hilbert space, where the fact that cL = 0 means that when

Li|ψ〉 = 0 one also necessarily has L†
i
|ψ〉 = 0. See section 5 for further comments.
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and that inverting the symplectic structure (2.27) yields the commutators

[alogα, a
†
logβ ] = 0 [âLα, â

†
Lβ] = +δαβ [âLα, a

†
logβ ] = −δαβ [aNU

Mαᾱ, a
NU†

Mββ̄
] = −δαβδᾱβ̄,

(4.22)

and of course [aRᾱ, a
†

Rβ̄
] = δαβ , where we have defined aNU

Mαᾱ = a†Mαᾱ. The desired poly-

nomials are thus precisely those built from a†logα and a†Rα. Due to the commutation rela-

tions (4.22), this leaves a positive semi-definite space of states. Taking a quotient by the

zero-norm states leaves a positive definite Fock space defined by acting on the vacuum with

only the right-moving creation operators a†Rα. This is just what one would expect from

the classical theory of chiral gravity. In particular, despite the non-unitary treatment of

log gravity, this approach provides a unitary theory of chiral gravity as desired.

5 Discussion

Our work above has studied the quantum theory of linearized anti-de Sitter topologically

massive gravity for various values of the coupling µℓ. Such theories generally contain

ghosts. As a result, while the classical theory is well-defined, the Hamiltonian is not

bounded below. Similarly, one may construct a well-defined unitary quantum theory (with

positive probabilities) though the Hamiltonian is again unbounded below. At the classical

level, the theory is continuous in µℓ and one obtains the so-called log gravity theory by

taking the limit as µℓ approaches the chiral point (µℓ → 1). In the same way, both the

quantum Hilbert space and local correlators at separated points are continuous at the chiral

point, so that we have a unitary quantization of log gravity.

The above classical theories have both right- and left-Virasoro algebras of conserved

charges which are again continuous at µℓ = 1. Because we work in the linearized theory,

the action of these charges on quantum fields is trivially the same as the action on classical

fields and is again continuous at µℓ = 1. However, the action of two charges (L±1) on our

vacuum state is not continuous and in fact diverges at µℓ = 1. As a result, only the right-

moving Virasoro algebra is represented on the Hilbert space of our unitary quantization of

log gravity. The left-moving algebra may be said to be spontaneously broken.

Indeed, from the bulk point of view the phenomenon has much in common with more

familiar cases of spontaneous symmetry breaking. The divergence of L±1 on our unitary

vacuum |0〉µ is an infra-red effect associated with the logarithmic behavior at the AdS

boundary. This can be seen by replacing the vector fields ξ±1 defining L±1 with vector

fields of compact support. Because the associated charges generate gauge transformations,

they vanish identically. However, this also leads to an important difference: because the

excitations generated by such truncated symmetries are pure gauge, one would not expect

to find Goldstone bosons in the usual sense. The point is that we find spontaneous breaking

of an asymptotic symmetry, as opposed to a more conventional global symmetry.

We have worked at the level of the linearized theory, where the Virasoro algebra simpli-

fies greatly. Aside from the SL(2,R) algebra generated by L±1, L0, it becomes essenitally a

U(1) current algebra. At the non-linear level, L±1 should appear in commutators of other

left-moving charges. Thus the divergence of L±1 implies that other left-moving charges
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must also diverge. It is natural to expect that the left-moving Virasoro algebra is broken

to just L0.

Because the action of the left-moving symmetries became ill-defined at the chiral point,

we could not define chiral gravity as the Ln = 0 truncation of log gravity using our unitary

quantization. In contrast, no such difficulties arose in the non-unitary quantization where

one obtained the expected chiral theory, which turns out to be unitary.

Since logarithmic conformal field theories are typically said to be non-unitary, the

reader may wonder if our symmetry breaking in the unitary theory follows directly by an

algebraic argument from the logarithmic structure of the primary fields. The answer is not

clear to us. In particular, the usual argument for non-unitarity assumes that the vacuum

is an eigenstate of L0, a statement that is manifestly false in our unitary quantization.

Indeed, the usual argument for non-unitarity of logarithmic theories involves only L0 (and

not L±1), while we find this operator to be well-defined at µℓ = 1.

From the perspective of chiral gravity, it would be very interesting to understand

whether our breaking of the the left-moving symmetries in the unitary theory indicates a

fundamental issue for quantum chiral gravity or is merely an artifact of our construction.

There are in principle several logical possibilities, which we enumerate below.

The first possibility is that the unitary quantization of TMG for µℓ > 1 admits some

more subtle µℓ → 1 limit which defines a better behaved vacuum for log gravity. Recall,

for example, that for simplicity we considered only linear transformations on the basis of

mode functions that were diagonal in α. Perhaps mixing modes with different values of α

would lead to better behavior for L±1? For both the diagonal and the non-diagonal cases,

it would be useful to understand better the behavior of the associated vacuum states in the

far ultra-violet. While we have noted that correlators in our vacuum |0〉µ are continuous

at µℓ = 1 when their arguments are separated, we have not studied the coincidence limits

in detail. The fact that the our modes are well-behaved at short distances leads one to

expect that the vacuum continues to have good short distance properties at µ = 1, but it

would be useful to verify that composite operators can be renormalized in a useful way.

Another logical possibility is that there is some clever way to implement the constraints

Ln = 0 on our µℓ = 1 Hilbert space despite the fact that some of the generators diverge. At

the linearized level, it is straightforward to solve the |n| ≥ 2 constraints using the fact (4.20)

that Lα ∝ alog(α−2). Since at the linearized level we have [Ln, L
†
m] = 0 for |n|, |m| ≥ 2,

all of these operators may be simultaneously diagonalized in the unitary theory. While

the solutions to these constraints are not normalizable, they are easily controlled using the

techniques of group averaging (see e.g. [36, 37]). In fact, any solution of the constraints for

n ≥ 2 necessarily also solves the constraints for n ≤ −2. Furthermore, at the classical level

setting alogα = 0 = a†logα for |n| ≥ 2 truncates the infinite sum that led to difficulties with

L±1. It is therefore possible that there is a useful sense in which the remaining constraints

L±1 = 0, L0 = 0 can be imposed on states solving the higher-order Virasoro constraints.

The problem, of course, is that to make use of the fact that alogα, a
†
logα annihilate the

state, we must commute these operators to the right in the expressions for L±1, L0. Un-

fortunately, it is not clear to us how the infinite sums generated by this procedure can be

controlled in a useful way.
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A third logical possibility is that unitary theories of chiral gravity are simply not

related to a unitary quantization of log gravity or of TMG for µℓ > 1. For example, it

may be that chiral gravity is best defined by truncating the non-unitary quantization of

log gravity, or by using Brown-Henneaux boundary conditions to define the theory directly

(without using log gravity as an intermediate step). While such approaches give up any

hope of connecting chiral gravity to a theory of quantum TMG with µℓ 6= 1 having positive

probabilities, this might be justified by arguing that the presence of ghosts in log gravity

or for µℓ 6= 1 suggests that chiral gravity is the only physically sensible theory resulting

from TMG with asymptotically AdS boundary conditions.

The final logical possibility is that our breaking of the left-moving symmetry does in

fact signal a fundamental issue for quantum chiral gravity. Though we do not see a direct

connection at this stage, it would be particularly interesting to relate this result to the

arguments of [9] suggesting that extremal CFTs do not exist.
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