10 research outputs found

    Essential Oils Of The Species Of Annonaceae Growing Wild In The State Of Para, Brazil: Guatteria Schomburgkiana Mart. And Pseudoxandra Cuspidata Maas [Óleos Essenciais De Espécies De Annonaceae Que Ocorrem No Pará: Guatteria Schomburgkiana Mart. E Pseudoxandra Cuspidata Maas]

    No full text
    The essential oils of Guatteria schomburgkiana and Pseudoxendra cuspidata, two species of Annonaceae, were obtained by hydrodistillation in Clevenger-type apparatus, and analyzed by GC/MS and GC/FID. The major components identified in the oils from G. schomburgkiene were spathulenol (leaf: 22.4%, fine stem: 14.0%, stem: 21.6%) and caryophyllene oxide (leaf: 14.7%, fine stem: 25.2%, stem: 26.7%). The oils from P. cuspidata were rich in pinenes: α- e β-pinene (leaf: 78.4%, fruit: 88.1 %, fine stem: 72.2%, stem: 55.7%). The high percentage of the monoterpenes α- and β-pinene in the essential oils of P. cuspidata are unusual for Annonaceae species; as the same way the high oil yield in the leaves and fruits of this species (leaves: 1.9%, fruits: 1.3%). The oils of G. schomburgkiana are sesquiterpenoids in nature, which occurs in the complex mixture. This is the first report of the chemical composition of the essential oils of P. cuspidata and G. schomburgkiana.93113116ADAMS, R.P., Identification of essential oil components by Gas Chromatography/Quadrupole Mass Spectrometry (2001) Carol Stream, , Allured Publ Corp, 456pBAYMA, J.C., Aporphinoid Alkaloids from Guatteria schomburgkiana Leaves (1988) Planta Medica, 54 (1), p. 84CAVALCANTE, P.B., (1991) Frutas comestíveis da Amazônia, , 5.ed. Belém: CEJUP, 279pCORRÊA, M.P., (1984) Dicionário das plantas úteis do Brasil e das exóticas cultivadas, , Rio de Janeiro: IBDFCORTES, D., Alkaloids of Annonaceae. LVIII. Alkaloids of Guatteria schomburgkiana (1985) Journal Natural Products, 48 (2), pp. 254-259CORTES, D., Alkaloids of Annonaceae. LIII. Alkaloids of Pseudoxandra aff. lucida. Study of Antioquine and its Derivatives (1985) Journal Natural Products, 48 (1), pp. 76-85CORTES, D., Alkaloids of Annonaceae. LXIV. Minor Alkaloids of the Bark of Pseudoxandra sclerocarpa (1986) Journal Natural Products, 49 (5), pp. 854-858DUCKE, A., BLACK, G.A., Notas Sobre a Fitogeografia da Amazônia Brasileira (1954) Boletim Técnico Instituto Agronômico Norte, 29, pp. 1-62EKUNDAYO, O.A., Review of the volatiles of the Annonaceae (1989) Journal Essential Oil Research, 1 (5), pp. 223-245ESTRELLA, E., (1995) Plantas Medicinales Amazonicas: Realidad y perspectivas, , Lima: GEF/PNUD, 302pFOURNET, A., BARRIOS, A.A., MUNOZ, V., Leishmanicidal and Trypanocidal Activities of Bolivian Medicinal Plants (1994) Journal Ethnopharmacology, 41 (1-2), pp. 19-37FOURNIER, G., Essential oils of Annonaceae. Part VIII. Volatile Constituents of the Essential Oils from three Guatteria species (1997) Journal Essential Oil Research, 9 (3), pp. 275-278LIMA, M.A., Alkaloids and Volatile Constituents from Guatteria juruensis (2003) Biochemical Systematic Ecology, 31 (4), pp. 423-425LIMA, M.A., Alkaloids and volatile constituents from Guatteria poeppigina (2004) Biochemical Systematic Ecology, 32 (3), pp. 347-349LOUREIRO, A.A., FREITAS, J.A., FREITAS, C.A.A., Essências madeireiras da Amazônia (1997) Manaus: MCT/INPA-CPPF, 3. , 103pMAAS, P.J.M., Project Systematics of Annonaceae (1983) Taxon, 32 (3), pp. 528-529OLIVEIRA, J. A família Annonaceae Juss. In: LISBOA, P.L.B. (Org.). Caxiuanã. Belém: MPEG, 1997. p.253-62SILVA, M.FLISBÔA, P.L.B.LISBÔA, R.C.L. Nomes vulgares de plantas amazônicas. Belém: INPA, 1977. 222pVAN DEN BERG, M.E. Plantas medicinais na Amazônia: contribuição ao seu conhecimento sistemático. 2.ed. rev. aum. Belém: MPEG, 1993. 207pWYLLIE, S.G., Volatile flavor components of Annona atemoya (Custard Apple) (1987) Journal Agricultural and Food Chemistry, 35 (5), pp. 768-77

    Chemical Variation In The Volatiles Of Copaifera Reticulata Ducke (leguminosae) Growing Wild In The States Of Pará And Amapá, Brazil

    No full text
    The oleoresins of 12 trees of Copaifera reticulata growing wild in the States of Pará and Amapá were examined by GC-FID and GC/MS. The majority oleoresins from Pará possessed high amounts of β-bisabolene (18.4-42.4%) and trans-α-bergamotene (11.8-29.6%). The oleoresins from Amapá were rich in β-caryophyllene (27.8-68.0%), β-selinene (0.2-20.6%) and β-bisabolene (3.7-17.8%). The results showed a high variation in the composition of the components of the oleoresins of C. reticulata. © 2009 Allured Business Media.216501503Dwyer, J.D., The Central American, West Indian and South American species of Copaifera (Caesalpiniacaae) (1951) Brittonia, 7, pp. 143-172Martins-da-Silva, R.C.V., (2006) Taxonomia das espécies de Copaifera L. (Leguminosae-Caesalpinioideae) oconentes na Amazônia brasileira, , DSc Thesis. Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilCorrêa, M.P., (1984) Dicionário das plantas úteis do Brasil e das exóticas cultivadas, , Ministério da Agriculture, Rio de JaneiroVan den Berg, M.E., (1993) Plantas Medicinais na Amazônia: Contribuiçāo ao seu conhecimento sistemático, , Museu Paraense Emilio Goeldi, Belém, BrazilVieira, L.S., (1992) Fitoterapia da Amazônia, p. 343. , 2nd Ed, p, Editora Agronômica Ceres, São Paulo, BrazilBasils, A.C., Sertié, J.A.A., Freitas, P.C.D., Zanini, A.C., Anti-inflammatory activity of oleoresin from Brazilian Copaifera (1988) J. Ethnopharmacol, 22, pp. 101-109Fernandes, R.M., Pereira, N.A., Paulo, L.G., Anti-inflammatory activity of copaiba balsam (Copaifera cearensis Huber) (1992) Rev Bras. Farm, 73, pp. 53-56Stashenko, E., Wiame, H., Dassy, S., Martinez, R.J., Catalytic transformation of copaiba (Copaifera officinalis) oil over zeolite ZMS-5 (1995) J. High Resol. Chromatogr, 18, pp. 54-58J. G. S. Maia, M. G. B. Zoghbi and E. H. A Andrade. Plantas Aromáticas na Amazônia e seus Óleos Essenciais. Museu Paraense Emilio Goeldi, Belém, Brazil (2000)Ferrari, M., Pagnoni, U.M., Pelizzoni, F., Lukes, V., Ferrari, G., Terpenoids from Copaifera langsdorfii (1971) Phytochemistry, 10, pp. 905-907Pinto, A.C., Braga, W.F., Rezende, C.M., Garrido, F.M.S., Veiga Jr., V.F., Bergter, L., Patitucci, M.L., Antunes, O.A.C., Separation of acid diterpenes of Copaifera cearensis Huber ex Ducke by flash chromatography using potassium hydroxide impregnated silica gel (2000) J. Braz. Chem. Soc, 11, pp. 355-360Denyer, C.V., Jackson, P., Loakes, D.M., Bllis, M.R., Young, D.A.B., Isolation of antirhinoviral sesquiterpenes from ginger (Zingiber officinale) (1992) J. Nat. Prod, 57, p. 658Klochkov, S.G., Kozlovskii, V.I., Pushin, A.N., Isolation and identification of a trail attractant for the termite Reticulitermes lucifugus from the plant Zizyphus Jujube (1989) Chem. Nat. Comp, 25, pp. 361-363Tao, L., Zhou, L., Zheng, L., Yao, M., Elemene displays anticancer ability on laryngeal cancer cells in vitro and in vivo (2006) Cancer Chemotherap. Pharmacol, 58, pp. 24-34Shimizu, M., Shogawa, H., Matsuzawa, T., Yonezawas, S., Hayashi, T., Arizawa, M., Suzuki, S., Morita, N., Anti-inflammatory constituents of topically applied crude drugs. IV. Constituents and antiinflammatory effect of Paraguayan crude drug "alhucema" (Lavandula latifolia Vill.) (1990) Chem. Pharm. Bull, 38, pp. 2283-2284Martin, S., Padilla, E., Ocete, M.A., Galvez, J., Jimenez, J., Zazuelo, A., Anti-inflammatory activity of the essential oil of Bupleurum fruticescens (1993) Planta Med, 59, pp. 533-536Zheng, G.-Q., Kenney, P.M., Lam, L.K.T., Sesquiterpenes from clove (Eugenia caryophyllata) as potential anticarcinogenic agents (1992) J. Nat. Prod, 55, p. 999Kang, R., Helms, R., Stout, M.J., Jabber, H., Chen, Z., Nakatsu, T., Antimicrobialactivity of the volatile constituents of Perilla frutescens and its synergistic effects with polygodial (1992) J. Agric. Food Chem, 40, pp. 2328-2330Tambe, Y., Tsujiuchi, H., Honda, G., Ikeshiro, Y., Tanaka, S., Gastric cytoprotection of the non-steroidal anti-inflammatory sesquiterpene, β-caryophyllene (1996) Planta Med, 62, pp. 469-470Ghelardini, C., Galeotti, N., Di Cesare Mannelli, M.L., Mazzani, G., Bartolini, A., Local anaesthesic activity of β-caryophyllene (2001) Farmaco, 56, pp. 387-389Xiao, J.B., Chen, X.Q., Zhang, Y.W., Jiang, X.Y., Xu, M., Cytotoxicity of Marchantia convolute leaf extracts to human liver and lung cancer cells (2006) Braz. J. Med. Biol. Res, 39, pp. 731-738Lin, W.Y., Kuo, Y.H., Chang, Y.L., Teng, C.M., Wang, E.C., Ishikawa, T., Anti-platelet aggregation and chemical constituents from the rhizome of Gynura japonica (2003) Planta Med, 69, pp. 757-764Sibanda, S., Chigwada, G., Poole, M., Gwebu, E.T., Noletto, J.A., Schmidt, J.M., Composition and bioactivity of the leaf essential oil of Heteropyxis dehniae from Zimbabwe (2004) J. Ethnopharmacol, 92, pp. 107-111Thebtaranonth, C., Wanauppathamkul, S., Yuthavong, Y., Antimalarial sesquiterpenes from tubers of Cyperus rotundus: Structure of 10, 12-peroxycalamenene, a sesquiterpene endoperoxide (1995) Phytochemistry, 40, pp. 125-128Shimizu, M., Shogawa, H., Matsuzawa, T., Yonezawas, S., Hayashi, T., Arizawa, M., Suzuki, S., Morita, N., Anti-inflammatory constituents of topically applied crude drugs. IV. Constituents and antiinflammatory effect of Paraguayan crude drug "alhucema" (Lavandula latifolia Vill.) (1990) Chem. Pharm. Bull, 38, pp. 2283-2284Adams, R.P., (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry, , Allured Publ. Corp, Carol Stream, ILCascon, V., Gilbert, B., Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne (2000) Phytochemistry, 55, pp. 773-77

    Variation In Volatiles Of Ocimum Campechianum Mill, And Ocimum Gratissimum L. Cultivated In The North Of Brazil

    No full text
    The essential oils of seven samples of Ocimum campechianum and five samples of O. gratissimum cultivated in the state of Para were obtained by hydrodistillation and analyzed by GC and GC-MS. The most abundant components identified in the leaf oils from O. campechianum were: eugenol (32.2% - 60.6%), methyleugenol (60.6% - 69.5%), 1,8-cineole (0.9% -19.7%), and elemicin (0.2% - 65.9%). The most abundant components identified in the oils from O. gratissimum were: thymol (13.1%- 36.2%), y-terpinene (0.2% -28.1 %), 1,8-cineole (0.0 - 25.2%), and p-cymene (4.4% - 19.9%). The results reveals the occurrence al least four types of O. campechianum in the State of Para, and at least two types of 0. gratissimum. The O. gratissimum studied here belongs to variety macrophyllum.103229240Paton, A Synopsis of Ocimum L. Africa (1992) Kew Bulletin, 47, pp. 403-435Viña, A., Murillo, E., Essential oil of twelve varieties of basil (Ocimum spp.) grown in Colombia (2003) J. Braz. Chem Soc, 14, pp. 744-749Corrêa, M.P., (1984) Dicionário das Plantas Úteis do Brasil e das Exóticas Cultivadas, , Rio de Janeiro, IBDFRodrigues, R.M., (1989) A Flora da Amazonia, , Belém, CEJUP, 462pMoreira, F., As plantas que curam (1978) São Paulo, Hemus Livraria, p. 260. , Editera, pPino, J.A., Rosado, A., Fuentes, V., Composition of the essential oil from the leaves and flowers of Ocimum gratissimum L. grown in Cuba (1996) J. Essent. Oil Res, 8, p. 139Pino, J.A., Garcia, J., Martinez, M.A., A comparison between the oil, solvent extracted and supercritical carbon dioxide extract of Ocimum gratissimum L (1998) J. Essent. Oil Res, 10, pp. 575-577Vieira, R.F., Simon, J.E., Chemical characterization of basil (Ocimum spp.) found in the markets and used in traditional medicine in Brazil (2000) Economic Botany, 54, p. 207Demissew, S., A description of some essential oil bearing plants in Ethiopia and their indigenous uses (1993) J. Essent. Oil Res, 5, pp. 465-479Simon, J.E., Morales, M.R., Phippen, W.B., Vieira, R.F., Hao, Z. (1999). Basil: a source of aroma compounds and a popular culinary and ornamental herb. pp. 499-505, In: Janick, J. (ed.), perspectives on new crops and new uses. ASHS Press, Alexandria, V. ASilva, M.G.V., Matos, F.J.A., Lopes, P.R.O., Silva, F.O., Holanda, M.T., Composition of essential oils from three Ocimum species obtained by steam and microwave distillation and supercritical CO2 extraction (2004) ARKIVOC, 6, p. 66Lemos, J.A., Passes, X.S., Fernandes, O.F., Paula, J.R., Ferri, P.H., Souza, L.K.H., Lemos, A.A., Silva, M.R.R., Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neofromans (2005) Mem. Inst. Oswalde Cruz, 100, p. 55Dubey, N.K., Tiwari, T.N., Mandin, D., Andriamboavonjy, H., Chaumont, J.P., Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype) (2000) Fitoterapia, 71, p. 567Vostrowsky, O, Garbe, W., Bestmann, H.-J. (1990). Essential Oil of Alfavaca, Ocimum gratissimum, from Brazilian Amazon. Z. Naturforsch., 45c, 1073Charles, D.J., Simon, J.E., Wood, K.V., Essential oil constituents of Ocimum micranthum Willd (1990) J. Agr. Food Chem, 38, pp. 120-122Vieira, R.F., Grayer, R.J., Paton, A., Simon, J.E., Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers (2001) Biochem. System. Ecol, 29, p. 287Nakamura, C.V., Ueda-Nakamura, T., Bando, E., Melo, A.F.N., Cortez, D.A.G., Dias Filho, B.P., Antibacterial activity of Ocimum gratissimum L. essential oil (1999) Mem. Inst. Oswaldo Cruz, 94, p. 675Orafidiya, L.O., Agbani, E.O., Iwalewa, E.O., Adelusola, K.A., Oyedapo, O.O., Studies on the acute and sub-chronic toxicity of the essential oil of Ocimum gratissimum L. leaf (2004) Phytomedicine, 11, p. 71Maia, J.G, Ramos, L.S., Luz, A.I.R., Silva, M.L., Zoghbi, M.G.B. (1988). Uncommon Brazilian essential oils of the Labiatae and Compositae. In: Lawrence, B.M.Mookherjee, B.D.Willis, B.J. (eds.). Flavors and fragrances: a world perspective. Amsterdam, Elsevier (Science Publication, B. 5), p. 177Silva, M.G., Craveiro, A.A., Machado, M.I.L., Alencar, J.W., Matos, F.J.A., Aurélio, F.K.F., Essential oils from leaves and inflorescences of Ocimum micranthum Willd. From Northeastern Brazil (1998) J. Essent. Oil Res, 10, pp. 77-78Adams, R.P., (2001) Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectrometry, , Allured Publ Corp, Carol Stream, ILYayi, E., Moudachirou, M., Chalchat, J.-C., Essential Oil of Ocimum gratissimum from Benin (1999) J. Essent. Oil Res, 11, p. 529Suddee, S., Paton, A.J., Parnell, A.N. (2005). Taxonomic revision of tribe Ocimeae Dumont. (Lamiaceae) in continental South East Asia. III. Ociminae. Kew Bulletin, 60:3Grayer, R.J., Kite, G.C., Goldstone, F.J., Bryan, S.E., Paton, A., Putievsky, E., Infraspecific taxonomy and essential oil chemotypes in Sweet basil, Ocimum basilicum (1996) Phytochem, 43, p. 103

    Acetylation of eugenol over 12-molybdophosphoric acid anchored in mesoporous silicate support synthesized from flint kaolin

    No full text
    A new prepared catalyst, 12-molybdophosphoric acid (HPMo) anchored to the mesoporous aluminosilicate AlSiM, synthesized from Amazon kaolin, was characterized and used as a heterogeneous acid catalyst for the production of eugenyl acetate by acetylation of eugenol with acetic anhydride. The effect of various reaction parameters, such as catalyst concentration, eugenol/acetic anhydride molar ratio, temperature and reaction time, was studied to optimize the conditions of maximum conversion of eugenol. The kinetics studies showed that in eugenol acetylation, the substrate concentration follows a first order kinetics. The results of activation energy was 19.96 kJ mol-1 for HPMo anchored to AlSiM. The reuse of the catalyst was also studied and there was no loss of catalytic activity after four cycles of use (from 99.9% in the first cycle to 90% in the fifth cycle was confirmed), and an excellent stability of the material was observed. Based on catalytic and kinetic studies, HPMo anchored to AlSiM is considered an excellent catalyst. © 2019 by the authors

    Efficient esterification of eugenol using a microwave-activated waste kaolin

    No full text
    Abstract: Eugenyl acetate has been investigated because of its beneficial bioactive antioxidant, antimicrobial and potential properties against the development of Aedes aegypti larvae. Here, we report, for the first time, the use of a catalyst prepared from flint kaolin with microwave irradiation for the acetylation of eugenol. A few kinetic parameters were evaluated in the experiments used for eugenol ester synthesis. High conversions (98%) were obtained after 1 h of reaction. The prepared material shows good activity (over 90%) even after 4 cycles of use. Therefore, the use of microwave radiation made it possible to prepare a catalyst in a very short time using a low-cost industrial by-product as a raw material that proved to be highly active, in addition to the additional advantage of being reusable, which would reduce possible environmental impacts caused by its disposal in the environment. Graphic abstract: [Figure not available: see fulltext.]. © 2020, Akadémiai Kiadó, Budapest, Hungary
    corecore