15,583 research outputs found
Localization properties of a tight-binding electronic model on the Apollonian network
An investigation on the properties of electronic states of a tight-binding
Hamiltonian on the Apollonian network is presented. This structure, which is
defined based on the Apollonian packing problem, has been explored both as a
complex network, and as a substrate, on the top of which physical models can
defined. The Schrodinger equation of the model, which includes only nearest
neighbor interactions, is written in a matrix formulation. In the uniform case,
the resulting Hamiltonian is proportional to the adjacency matrix of the
Apollonian network. The characterization of the electronic eigenstates is based
on the properties of the spectrum, which is characterized by a very large
degeneracy. The rotation symmetry of the network and large number of
equivalent sites are reflected in all eigenstates, which are classified
according to their parity. Extended and localized states are identified by
evaluating the participation rate. Results for other two non-uniform models on
the Apollonian network are also presented. In one case, interaction is
considered to be dependent of the node degree, while in the other one, random
on-site energies are considered.Comment: 7pages, 7 figure
Fluctuation of the Initial Conditions and Its Consequences on Some Observables
We show effects of the event-by-event fluctuation of the initial conditions
(IC) in hydrodynamic description of high-energy nuclear collisions on some
observables. Such IC produce not only fluctuations in observables but, due to
their bumpy structure, several non-trivial effects appear. They enhance
production of isotropically distributed high-pT particles, making v2 smaller
there. Also, they reduce v2 in the forward and backward regions where the
global matter density is smaller, so where such effects become more
efficacious. They may also produce the so-called ridge effect in the two
large-pT particle correlation.Comment: 6 pages, 6 figures, presented at the IV Workshop on Particle
Correlations and Femtoscopy (WPCF2008), Krakow, Poland, 11-14 Sep 200
Non-nequilibrium model on Apollonian networks
We investigate the Majority-Vote Model with two states () and a noise
on Apollonian networks. The main result found here is the presence of the
phase transition as a function of the noise parameter . We also studies de
effect of redirecting a fraction of the links of the network. By means of
Monte Carlo simulations, we obtained the exponent ratio ,
, and for several values of rewiring probability . The
critical noise was determined and also was calculated. The
effective dimensionality of the system was observed to be independent on ,
and the value is observed for these networks. Previous
results on the Ising model in Apollonian Networks have reported no presence of
a phase transition. Therefore, the results present here demonstrate that the
Majority-Vote Model belongs to a different universality class as the
equilibrium Ising Model on Apollonian Network.Comment: 5 pages, 5 figure
- …