63 research outputs found

    In vitro genome editing for testing potential gRNAs in CRISPR/Cas9 strategy

    Get PDF
    Motivation: CRISPR/Cas9 is a promising strategy that improves the efficacy of homology recombination, opening a wide number of possibilites for genome editing. The use of this technology on the reparation of single nucleotide mutations is being under investigation to recover the phenotype of a number of diseases, as the Crigler-Najjar syndrome. Methods: The genomic target sequence of the Ugt1a1 mouse gene was cloned into vectors that were designed to assess efficiency in the generation of double strand brakes (DSB) by engineered nucleases. We have designed different sgRNAs targeting this genomic region. The vectors were transfected into Hek293 together with a plasmid expressing the Cas9 nucelase and the sgRNA, generating a DSB in the target sequence. After recombination, the inactive luciferase gene recovers activity, which is proportional to the cutting efficiency of the nuclease. Then, luciferase and T7 assays were used to determine the activity of gRNAs to target the specific genome locus. Results: Depending on the DNA sequence where is located the gRNA and, specially, the PAM sequences, we have obtained different results on the activity of our gRNAs. However, different factors, as the type of cells transfected or the vectors used, can affect the final activity of the gRNAs and thus, the whole CRISPR/Cas9 activity.Conclusions: With this project, it has been demonstrated the importance of a good design and optimization of the protocols to choose the most efficient gRNAs for CRISPR/Cas9 machinery, as well as in the vectors used to synthetize all the components needed

    An exonic splicing enhancer offsets the atypical GU-rich 3' splice site of human apolipoprotein A-II exon 3.

    Get PDF
    Human apolipoprotein A-II (apoA-II) intron 2/exon 3 junction shows a peculiar tract of alternating pyrimidines and purines (GU tract) that makes the acceptor site deviate significantly from the consensus. However, apoA-II exon 3 is constitutively included in mRNA. We have studied this unusual exon definition by creating a construct with the genomic fragment encompassing the whole gene from apoA-II and its regulatory regions. Transient transfections in Hep3B cells have shown that deletion or replacement of the GU repeats at the 3â€Č splice site resulted in a decrease of apoA-II exon 3 inclusion, indicating a possible role of the GU tract in splicing. However, a 3â€Č splice site composed of the GU tract in heterologous context, such as the extra domain A of human fibronectin or cystic fibrosis transmembrane conductance regulator exon 9, resulted in total skipping of the exons. Next, we identified the exonic cis-acting elements that may affect the splicing efficiency of apoA-II exon 3 and found that the region spanning from nucleotide 87 to 113 of human apoA-II exon 3 is essential for its inclusion in the mRNA. Overlapping deletions and point mutations (between nucleotides 91 and 102) precisely defined an exonic splicing enhancer (ESEwt). UV cross-linking assays followed by immunoprecipitation with anti-SR protein monoclonal antibodies showed that ESEwt, but not mutated ESE RNA, was able to bind both alternative splicing factor/splicing factor 2 and SC35. Furthermore, overexpression of both splicing factors enhanced exon 3 inclusion. These results show that this protein-ESE interaction is able to promote the incorporation of exon 3 in mRNA and suggest that they can rescue the splicing despite the noncanonical 3â€Č splice site

    Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan

    Get PDF
    Fibronectins (FNs) are multifunctional high molecular weight glycoproteins present in the blood plasma and in the ECMs of tissues. The FN primary transcript undergoes alternative splicing in three regions generating up to 20 main different variants in humans. However, the precise role of the FN isoforms is poorly understood. One of the alternatively spliced exons is the extra domain A (EDA) or extra type III homology that is regulated spatially and temporally during development and aging. To study its in vivo function, we generated mice devoid of EDA exon-regulated splicing. Constitutive exon inclusion was obtained by optimizing the splice sites, whereas complete exclusion was obtained after in vivo CRE-loxP–mediated deletion of the exon. Homozygous mouse strains with complete exclusion or inclusion of the EDA exon were viable and developed normally, indicating that the alternative splicing at the EDA exon is not necessary during embryonic development. Conversely, mice without the EDA exon in the FN protein displayed abnormal skin wound healing, whereas mice having constitutive inclusion of the EDA exon showed a major decrease in the FN levels in all tissues. Moreover, both mutant mouse strains have a significantly shorter lifespan than the control mice, suggesting that EDA splicing regulation is necessary for efficient long-term maintenance of biological functions

    Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice

    Get PDF
    : Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics

    The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022

    Get PDF
    This article summarises expert discussion on the management of patients with hepatocellular carcinoma (HCC), which took place during the 24th World Gastrointestinal Cancer Congress (WGICC) in Barcelona, July 2022. A multidisciplinary approach is mandatory to ensure an optimal diagnosis and staging of HCC, planning of curative and therapeutic options, including surgical, embolisation, ablative strategies, or systemic therapy. Furthermore, in many patients with HCC, underlying liver cirrhosis represents a challenge and influences the therapeutic options

    The Helicobacter pylori Genome Project : insights into H. pylori population structure from analysis of a worldwide collection of complete genomes

    Get PDF
    Helicobacter pylori, a dominant member of the gastric microbiota, shares co-evolutionary history with humans. This has led to the development of genetically distinct H. pylori subpopulations associated with the geographic origin of the host and with differential gastric disease risk. Here, we provide insights into H. pylori population structure as a part of the Helicobacter pylori Genome Project (HpGP), a multi-disciplinary initiative aimed at elucidating H. pylori pathogenesis and identifying new therapeutic targets. We collected 1011 well-characterized clinical strains from 50 countries and generated high-quality genome sequences. We analysed core genome diversity and population structure of the HpGP dataset and 255 worldwide reference genomes to outline the ancestral contribution to Eurasian, African, and American populations. We found evidence of substantial contribution of population hpNorthAsia and subpopulation hspUral in Northern European H. pylori. The genomes of H. pylori isolated from northern and southern Indigenous Americans differed in that bacteria isolated in northern Indigenous communities were more similar to North Asian H. pylori while the southern had higher relatedness to hpEastAsia. Notably, we also found a highly clonal yet geographically dispersed North American subpopulation, which is negative for the cag pathogenicity island, and present in 7% of sequenced US genomes. We expect the HpGP dataset and the corresponding strains to become a major asset for H. pylori genomics

    Bilirubin-Induced Oxidative Stress Leads to DNA Damage in the Cerebellum of Hyperbilirubinemic Neonatal Mice and Activates DNA Double-Strand Break Repair Pathways in Human Cells

    No full text
    Unconjugated bilirubin is considered a potent antioxidant when present at moderate levels. However, at high concentrations, it produces severe neurological damage and death associated with kernicterus due to oxidative stress and other mechanisms. While it is widely recognized that oxidative stress by different toxic insults results in severe damage to cellular macromolecules, especially to DNA, no data are available either on DNA damage in the brain triggered by hyperbilirubinemia during the neonatal period or on the activation of DNA repair mechanisms. Here, using a mouse model of neonatal hyperbilirubinemia, we demonstrated that DNA damage occurs in vivo in the cerebellum, the brain region most affected by bilirubin toxicity. We studied the mechanisms associated with potential toxic action of bilirubin on DNA in in vitro models, which showed significant increases in DNA damage when neuronal and nonneuronal cells were treated with 140 nM of free bilirubin (Bf), as determined by γH2AX Western blot and immunofluorescence analyses. Cotreatment of cells with N-acetyl-cysteine, a potent oxidative-stress inhibitor, prevented DNA damage by bilirubin, supporting the concept that DNA damage was caused by bilirubin-induced oxidative stress. Bilirubin treatment also activated the main DNA repair pathways through homologous recombination (HR) and nonhomologous end joining (NHEJ), which may be adaptive responses to repair bilirubin-induced DNA damage. Since DNA damage may be another important factor contributing to neuronal death and bilirubin encephalopathy, these results contribute to the understanding of the mechanisms associated with bilirubin toxicity and may be of relevance in neonates affected with severe hyperbilirubinemia
    • 

    corecore