15 research outputs found

    Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary

    Get PDF
    Objective: This executive summary presents in brief the current evidence assessed in the clinical practice guideline prepared by the Canadian Hypertensive Disorders of Pregnancy Working Group and published by Pregnancy Hypertension (. http://www.pregnancyhypertension.org/article/S2210-7789(14)00004-X/fulltext) to provide a reasonable approach to the diagnosis, evaluation, and treatment of the hypertensive disorders of pregnancy. Evidence: Published literature was retrieved through searches of Medline, CINAHL, and The Cochrane Library in March 2012 using appropriate controlled vocabulary (e.g., pregnancy, hypertension, pre-eclampsia, pregnancy toxemias) and key words (e.g., diagnosis, evaluation, classification, prediction, prevention, prognosis, treatment, postpartum follow-up). Results were restricted to systematic reviews, randomized control trials, controlled clinical trials, and observational studies published in French or English between January 2006 and February 2012. Searches were updated on a regular basis and incorporated in the guideline to September 2013. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. Values: The quality of evidence in the guideline summarized here was rated using the criteria described in the Report of the Canadian Task Force on Preventative Health Care (. Table 1)

    Less-tight versus tight control of hypertension in pregnancy.

    Get PDF
    BACKGROUND: The effects of less-tight versus tight control of hypertension on pregnancy complications are unclear. METHODS: We performed an open, international, multicenter trial involving women at 14 weeks 0 days to 33 weeks 6 days of gestation who had nonproteinuric preexisting or gestational hypertension, office diastolic blood pressure of 90 to 105 mm Hg (or 85 to 105 mm Hg if the woman was taking antihypertensive medications), and a live fetus. Women were randomly assigned to less-tight control (target diastolic blood pressure, 100 mm Hg) or tight control (target diastolic blood pressure, 85 mm Hg). The composite primary outcome was pregnancy loss or high-level neonatal care for more than 48 hours during the first 28 postnatal days. The secondary outcome was serious maternal complications occurring up to 6 weeks post partum or until hospital discharge, whichever was later. RESULTS: Included in the analysis were 987 women; 74.6% had preexisting hypertension. The primary-outcome rates were similar among 493 women assigned to less-tight control and 488 women assigned to tight control (31.4% and 30.7%, respectively; adjusted odds ratio, 1.02; 95% confidence interval [CI], 0.77 to 1.35), as were the rates of serious maternal complications (3.7% and 2.0%, respectively; adjusted odds ratio, 1.74; 95% CI, 0.79 to 3.84), despite a mean diastolic blood pressure that was higher in the less-tight-control group by 4.6 mm Hg (95% CI, 3.7 to 5.4). Severe hypertension (≥160/110 mm Hg) developed in 40.6% of the women in the less-tight-control group and 27.5% of the women in the tight-control group (P<0.001). CONCLUSIONS: We found no significant between-group differences in the risk of pregnancy loss, high-level neonatal care, or overall maternal complications, although less-tight control was associated with a significantly higher frequency of severe maternal hypertension. (Funded by the Canadian Institutes of Health Research; CHIPS Current Controlled Trials number, ISRCTN71416914; ClinicalTrials.gov number, NCT01192412.)

    Influence of gestational age at initiation of antihypertensive therapy: Secondary analysis of CHIPS trial data (control of hypertension in pregnancy study).

    Get PDF
    For hypertensive women in CHIPS (Control of Hypertension in Pregnancy Study), we assessed whether the maternal benefits of tight control could be achieved, while minimizing any potentially negative effect on fetal growth, by delaying initiation of antihypertensive therapy until later in pregnancy. For the 981 women with nonsevere, chronic or gestational hypertension randomized to less-tight (target diastolic blood pressure, 100 mm Hg), or tight (target, 85 mm Hg) control, we used mixed-effects logistic regression to examine whether the effect of less-tight (versus tight) control on major outcomes was dependent on gestational age at randomization, adjusting for baseline factors as in the primary analysis and including an interaction term between gestational age at randomization and treatment allocation. Gestational age was considered categorically (quartiles) and continuously (linear or quadratic form), and the optimal functional form selected to provide the best fit to the data based on the Akaike information criterion. Randomization before (but not after) 24 weeks to less-tight (versus tight) control was associated with fewer babies with birth weight 48 hours (Pinteraction=0.354). For the mother, less-tight (versus tight) control was associated with more severe hypertension at all gestational ages but particularly so before 28 weeks (Pinteraction=0.076). In women with nonsevere, chronic, or gestational hypertension, there seems to be no gestational age at which less-tight (versus tight) control is the preferred management strategy to optimize maternal or perinatal outcomes

    Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    No full text
    Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth

    Human Serum PCSK9 Is Elevated at Parturition in Comparison to Nonpregnant Subjects While Serum PCSK9 from Umbilical Cord Blood is Lower Compared to Maternal Blood

    No full text
    Background. Serum lipids including total cholesterol (TC), triglycerides (TG), and low density lipoprotein cholesterol (LDL-C) are increased in pregnancy. Serum proprotein convertase subtilisin kexin 9 (PCSK9) is a significant player in lipoprotein metabolism. Circulating PCSK9 downregulates the LDL receptor on the surface of the liver, inhibiting clearance of LDL-C. Therefore, our study assessed serum PCSK9 concentrations at parturition (Maternal) compared to a nonpregnant (Control) cohort, as well as between mother and newborn (Maternal and Newborn). Methods. Blood was collected from women at parturition and from umbilical cords. Serum lipids and PCSK9 were measured and data were analysed for significance by Mann-Whitney U test at P < 0.05 and presented as median levels. Spearman's correlations were made at a 95% confidence interval. Results. Serum PCSK9 was significantly higher in Maternal versus Control cohorts (493.1 versus 289.7 ng/mL; P < 0.001, resp.), while the Newborn cohort was significantly lower than Maternal (278.2 versus 493.1 ng/mL; P < 0.0001, resp.). PCSK9 was significantly correlated with TC and HDL-C in Maternal and with TC, LDL-C, and HDL-C in Newborn cohorts. Conclusions. Our study provides the first quantitative report on PCSK9 in pregnancy (at parturition) and in umbilical cord blood. Further research will determine how these changes may affect lipoprotein levels during this physiological state

    Placental growth factor as a marker of fetal growth restriction caused by placental dysfunction

    Get PDF
    INTRODUCTION: Discriminating between placentally-mediated fetal growth restriction and constitutionally-small fetuses is a challenge in obstetric practice. Placental growth factor (PlGF), measurable in the maternal circulation, may have this discriminatory capacity.METHODS: Plasma PlGF was measured in women presenting with suspected fetal growth restriction (FGR; ultrasound fetal abdominal circumference &lt;10th percentile for gestational age) at sites in Canada, New Zealand and the United Kingdom. When available, placenta tissue underwent histopathological examination for lesions indicating placental dysfunction, blinded to PlGF and clinical outcome. Lesions were evaluated according to pre-specified severity criteria and an overall severity grade was assigned (0-3, absent to severe). Low PlGF (concentration &lt;5th percentile for gestational age) to identify placental FGR (severity grade≥2) was assessed and compared with routine parameters for fetal assessment. For all cases, the relationship between PlGF and the sampling-to-delivery interval was determined.RESULTS: Low PlGF identified placental FGR with an area under the receiver-operator characteristic curve of 0.96 [95% CI 0.93-0.98], 98.2% [95% CI 90.5-99.9] sensitivity and 75.1% [95% CI 67.6-81.7] specificity. Negative and positive predictive values were 99.2% [95% CI 95.4-99.9] and 58.5% [95% CI 47.9-68.6], respectively. Low PlGF outperformed gestational age, abdominal circumference and umbilical artery resistance index in predicting placental FGR. Very low PlGF (&lt;12 pg/mL) was associated with shorter sampling-to-delivery intervals than normal PlGF (13 vs. 29.5 days, P &lt; 0.0001).DISCUSSION: Low PlGF identifies small fetuses with significant underlying placental pathology and is a promising tool for antenatal discrimination of FGR from fetuses who are constitutionally-small.</p
    corecore