19 research outputs found

    Short-term effects of etifoxine on human gut microbiome in healthy men

    Get PDF
    BackgroundNeurosteroids have recently gained in interest as a treatment strategy for affective disorders. Etifoxine is known for its dual mode of action, one of which is to stimulate endogenous neurosteroid synthesis. The gut microbiome has been studied in affective disorders, but it has not been investigated in the context of human etifoxine or neurosteroid interventions.MethodsWe performed a crossover study with 36 healthy male volunteers who received etifoxine versus alprazolam and placebo in a balanced Williams design. Participants were randomized into six sequences and went through three 5-day treatments followed by wash-out phases of 9 days. Bacterial compositions in stool samples were determined by high-throughput 16S rRNA amplicon sequencing.ResultsGut microbiome analyses revealed no relevant effects between treatments with respect to alpha and beta diversity. Differential abundance analyses yielded etifoxine treatment as the only effect related to changes in microbial features with reductions of Faecalibacterium duncaniae, Roseburia hominis and Lactobacillus rogosae (i.e., Bacteroides galacturonicus).ConclusionHere we report on the first human investigation of the gut microbiome with short-term etifoxine intervention. Differences in diversity and compositional structure of the microbiome were more likely due to between- subject effects rather than medication. However, five-day treatment with etifoxine reduced the abundance of a few bacterial species. These species are currently seen as beneficial components of a healthy intestinal microbiome. This reduction in abundances may be related to elevated endogenous neurosteroids

    Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts

    Get PDF
    Mitochondrial malfunction is supposed to be involved in the etiology and pathology of major depressive disorder (MDD). Here, we aimed to identify and characterize the molecular pathomechanisms related to mitochondrial dysfunction in adult human skin fibroblasts, which were derived from MDD patients or non-depressive control subjects. We found that MDD fibroblasts showed significantly impaired mitochondrial functioning: basal and maximal respiration, spare respiratory capacity, non-mitochondrial respiration and adenosine triphosphate (ATP)-related oxygen consumption was lower. Moreover, MDD fibroblasts harbor lower ATP levels and showed hyperpolarized mitochondrial membrane potential. To investigate cellular resilience, we challenged both groups of fibroblasts with hormonal (dexamethasone) or metabolic (galactose) stress for one week, and found that both stressors increased oxygen consumption but lowered ATP content in MDD as well as in non-depressive control fibroblasts. Interestingly, the bioenergetic differences between fibroblasts from MDD or non-depressed subjects, which were observed under non-treated conditions, could not be detected after stress. Our findings support the hypothesis that altered mitochondrial function causes a bioenergetic imbalance, which is associated with the molecular pathophysiology of MDD. The observed alterations in the oxidative phosphorylation system (OXPHOS) and other mitochondria-related properties represent a basis for further investigations of pathophysiological mechanisms and might open new ways to gain insight into antidepressant signaling pathways

    Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties

    Get PDF
    The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder

    Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

    Get PDF
    In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice

    The cytokine IL‐17A as a marker of treatment resistance in major depressive disorder?

    No full text
    Major depression is a complex disease and—among others, inflammation appears to play an important role in its pathophysiology. In this study, we investigated a broad range of cytokines in depressed patients. Plasma levels of interleukin (IL)‐12/ IL‐23p40, IL‐15, IL‐16, IL‐17A, IL‐1α, IL‐7, tumor necrosis factorβ and vascular endothelial growth factor were compared in 48 patients suffering from major depression before, after one and after six weeks of antidepressive treatment in relation to therapy response. Interestingly, the level of IL‐17A turned out to rise significantly in the non‐responder group compared to responder during antidepressive treatment. IL‐17A is a pro‐inflammatory cytokine that initiates the production of other cytokines, thereby inducing and mediating immune response. It is also involved in allergic and autoimmune‐related diseases. The database investigating the role of IL‐17A in major depressive disorder has grown within the last few years comparing levels of this cytokine in depressed patients versus healthy subjects. However, little is known about the expression of IL‐17A during the course of antidepressive treatment. In summary, our study provides valuable evidence that this cytokine might serve as a marker of therapy resistance to antidepressants

    Macrophage-Derived Chemokine: A Putative Marker of Pharmacological Therapy Response in Major Depression?

    No full text
    Introduction: Inflammatory processes play an important and complex role in the pathophysiology of major depressive disorder (MDD), but, so far, no specific investigation of chemokines exists. Methods: In this study, we investigated the changes of plasma chemokine levels (eotaxin-1, eotaxin-3, IP-10, MCP-1, MCP-4, MDC, MIP-1 alpha, MIP-1 beta, and TARC) in 47 MDD patients before (PRE) and after 1 and 6 weeks of pharmacological treatment (POST1 and POST6) in relation to the response to antidepressive therapy. We hypothesized that the direction of alterations in levels of chemokines would significantly differ between the 2 groups, responders and nonresponders. Results: Among the investigated chemokines, only the level of macrophage-derived chemokine (MDC) changed significantly in relation to therapy response. MDC levels were significantly elevated in the responder group at POST6. Discussion: MDC is a constitutively expressed chemokine involved in the pathophysiology of infectious and neoplastic diseases. This is the first study providing valuable hints that MDC might serve as a marker of pharmacological therapy response in MDD. (C) 2017 S. Karger AG, Base

    Classical Risk Factors and Inflammatory Biomarkers: One of the Missing Biological Links between Cardiovascular Disease and Major Depressive Disorder

    Get PDF
    Background: Cardiovascular disorders (CVD) and major depressive disorder (MDD) are the most frequent diseases worldwide responsible for premature death and disability. Behavioral and immunological variables influence the pathophysiology of both disorders. We therefore determined frequency and severity of MDD in CVD and studied whether MDD without CVD or other somatic diseases influences classical and inflammatory biomarkers of cardiovascular risk. In addition, we investigated the influence of proinflammatory cytokines on antidepressant treatment outcome. Methods: In a case-control design, 310 adults (MDD patients without CVD, CVD patients, and cardiologically and psychiatrically healthy matched controls) were investigated. MDD patients were recruited after admission in a psychiatric university hospital. Primary outcome criteria were clinical depression ratings (HAM-D scale), vital signs, classical cardiovascular risk factors and inflammatory biomarkers which were compared between MDD patients and healthy controls. Results: We detected an enhanced cardiovascular risk in MDD. Untreated prehypertension and signs directing to a metabolic syndrome were detected in MDD. Significantly higher inflammatory biomarkers such as the high sensitivity C-reaktive protein (hsCRP) and proinflammatory acute phase cytokines interleukine-1β (IL-1β) and interleukine-6 (IL-6) underlined the higher cardiovascular risk in physically healthy MDD patients. Surprisingly, high inflammation markers before treatment were associated with better clinical outcome and faster remission. The rate of MDD in CVD patients was high. Conclusions: Patients suffering from MDD are at specific risk for CVD. Precise detection of cardiovascular risks in MDD beyond classical risk factors is warranted to allow effective prophylaxis and treatment of both conditions. Future studies of prophylactic interventions may help to provide a basis for prophylactic treatment of both MDD and CVD. In addition, the high risk for MDD in CVD patients was confirmed and underlines the requirement for clinical attention
    corecore