254 research outputs found

    Quantum corrections to the phase diagram of heavy-fermion superconductors

    Full text link
    The competition between magnetism and Kondo effect is the main effect determining the phase diagram of heavy fermion systems. It gives rise to a quantum critical point which governs the low temperature properties of these materials. However, experimental results made it clear that a fundamental ingredient is missing in this description, namely superconductivity. In this paper we make a step forward in the direction of incorporating superconductivity and study the mutual effects of this phase and antiferromagnetism in the phase diagram of heavy fermion metals. Our approach is based on a Ginzburg-Landau theory describing superconductivity and antiferromagnetism in a metal with quantum corrections taken into account through an effective potential. The proximity of an antiferromagnetic instability extends the region of superconductivity in the phase diagram and drives this transition into a first order one. On the other hand superconducting quantum fluctuations near a metallic antiferromagnetic quantum critical point gives rise to a first order transition from a low moment to a high moment state in the antiferromagnet. Antiferromagnetism and superconductivity may both collapse at a quantum bicritical point whose properties we calculate.Comment: 10 pages, 6 figure

    Universal behavior at discontinuous quantum phase transitions

    Full text link
    Discontinuous quantum phase transitions besides their general interest are clearly relevant to the study of heavy fermions and magnetic transition metal compounds. Recent results show that in many systems belonging to these classes of materials, the magnetic transition changes from second order to first order as they approach the quantum critical point (QCP). We investigate here some mechanisms that may be responsible for this change. Specifically the coupling of the order parameter to soft modes and the competition between different types of order near the QCP. For weak first order quantum phase transitions general results are obtained. In particular we describe the thermodynamic behavior at this transition when it is approached from finite temperatures. This is the discontinuous equivalent of the non-Fermi liquid trajectory close to a conventional QCP in a heavy fermion material.Comment: 7 pages, 3 figure

    Particle-Field Duality and Form Factors from Vertex Operators

    Full text link
    Using a duality between the space of particles and the space of fields, we show how one can compute form factors directly in the space of fields. This introduces the notion of vertex operators, and form factors are vacuum expectation values of such vertex operators in the space of fields. The vertex operators can be constructed explicitly in radial quantization. Furthermore, these vertex operators can be exactly bosonized in momentum space. We develop these ideas by studying the free-fermion point of the sine-Gordon theory, and use this scheme to compute some form-factors of some non-free fields in the sine-Gordon theory. This work further clarifies earlier work of one of the authors, and extends it to include the periodic sector.Comment: 17 pages, 2 figures, CLNS 93/??

    Can a CPT Violating Ether Solve ALL Electron (Anti)Neutrino Puzzles?

    Get PDF
    Assuming that CPT is violated in the neutrino sector seems to be a viable alternative to sterile neutrinos when it comes to reconciling the LSND anomaly with the remainder of the neutrino data. There are different (distinguishable) ways of incorporating CPT violation into the standard model, including postulating m different from \bar{m}. Here, I investigate the possibility of introducing CPT violation via Lorentz-invariance violating effective operators (``Ether'' potentials) which modify neutrino oscillation patterns like ordinary matter effects. I argue that, within a simplified two-flavor like oscillation analysis, one cannot solve the solar neutrino puzzle and LSND anomaly while still respecting constraints imposed by other neutrino experiments, and comment on whether significant improvements should be expected from a three-flavor analysis. If one turns the picture upside down, some of the most severe constrains on such CPT violating terms can already be obtained from the current neutrino data, while much more severe constraints can arise from future neutrino oscillation experiments.Comment: 10 pages, 1 eps figure; version to appear in PRD. Comment added, mistake corrected, results and conclusions unchange

    Fermion Back-Reaction and the Sphaleron

    Full text link
    Using a simple model, a new sphaleron solution which incorporates finite fermionic density effects is obtained. The main result is that the height of the potential barrier (sphaleron energy) decreases as the fermion density increases. This suggests that the rate of sphaleron-induced transitions increases when the fermionic density increases. However the rate increase is not expected to change significantly the predictions from the standard sphaleron-induced baryogenesis scenarios.Comment: 11 pages, Revtex (2 figures available upon request), to appear in Phys. Rev. D (Rapid Communication

    Gauge Invariance and the Critical Properties of Quantum Hall Plateaux Transitions

    Full text link
    A model consisting of a single massless scalar field with a topological coupling to a pure gauge field is defined and studied. It possesses an SL(2,Z) symmetry as a consequence of the gauge invariance. We propose that by adding impurities the model can be used to describe transitions between Quantum Hall plateaux. This leads to a correlation length exponent of 20/9, in excellent agreement with the most recent experimental measurements.Comment: 25 pages, minor changes in data discussion, Section V on connection with staircase model is expanded References added. Interpretive comments added in section 3 about the critical condition. with improved terminolog

    Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow

    Get PDF
    A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement

    Tocolytic effect of a selective FP receptor antagonist in rodent models reveals an innovative approach to the treatment of preterm labor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Management of preterm labor by tocolysis remains an unmet medical need. Prostaglandins play a major role in regulation of uterine activity and in molecular mechanisms of human labor and parturition. There is some circumstantial evidence that prostaglandin F2α by action through the prostaglandin receptor subtype FP is effective in key events during labor uterine contraction, rupture of membranes and cervical dilation. This role of FP is briefly reviewed. In this study, we tested the hypothesis that an orally active and selective FP antagonist may arrest labor and delay parturition in animal models.</p> <p>Methods</p> <p>We examined the effects of a small molecule selective antagonist of the FP receptor (AS604872) in inhibition of spontaneous uterine contraction in pregnant rat near term. We tested AS604872 for its ability to delay preterm birth in a mouse model in which the anti-progestin agent RU486 triggered parturition.</p> <p>Results</p> <p>By oral or intravenous dosing AS604872 reduced markedly and dose-dependently the spontaneous uterine contractions in late-term pregnant rats at gestational days 19–21. In pregnant mice, AS604872 delayed the preterm birth caused by RU486 administration. The effect was dose-dependent with a significant increase in the mean delivery time of 16 and 33 hours at oral doses of 30 mg/kg and 100 mg/kg, respectively, in the case of labor triggered at gestational day 14. In both models AS604872 appeared more effective than the ÎČ-agonist ritodrine.</p> <p>Conclusion</p> <p>The tocolytic activity displayed by a selective FP receptor antagonist supports a key role for the FP receptor in the pathophysiology of premature birth and demonstrates the therapeutic potential of an FP antagonist for the treatment of preterm labor cases in which uterine hyperactivity plays a dominant role.</p
    • 

    corecore