57 research outputs found

    Genetic Control of Mosquitoes: population suppression strategies

    Get PDF
    Ao longo das duas últimas décadas, morbidade e mortalidade da malária e dengue e outros patógenos tem se tornado cada vez mais um problema de Saúde Pública. O aumento na distribuição geográfica de seus respectivos vetores é acompanhada pela emergência de doenças em novas áreas. Não estão disponíveis drogas específicas suficientes e não há vacinas específicas para imunizar as populações alvo. As medidas de controle de mosquitos atuais falharam em atingir os objetivos propostos, principalmente devido à grande capacidade reprodutiva dos mosquitos e alta flexibilidade genômica. O controle químico se torna cada vez mais restrito devido a sua potencial toxicidade aos seres humanos, mortalidade de organismos não alvos, resistência a inseticida além de outros impactos ambientais. Novas estratégias de controle são necessárias. A técnica do inseto estéril (SIT) é um método de supressão populacional espécie específico e ambientalmente amigável, baseia-se na criação em massa, esterilização mediante irradiação e liberação de um grande número de insetos machos. Liberar insetos carregando um gene letal dominante (RIDL) oferece uma solução a muitas limitações impostas pela técnica do inseto estéril (SIT) que limitaram sua aplicação em mosquitos e ainda assim mantém suas características de ambientalmente amigável e espécie específica. A natureza auto-limitante de mosquitos estéreis tende a deixar alguns empecilhos para uso no campo, de certa forma, menos desafiadores quando comparados a sistemas auto-propagação, característicos de estratégias de substituição de população. Sistemas auto-limitantes estão mais próximos para uso no campo, portanto pode ser apropriado considerá-lo primeiro. A perspectiva de métodos de controle genéticos contra mosquitos vetores de doenças que acometem humanos está rapidamente se tornando uma realidade, muitas decisões terão de ser tomadas em âmbito nacional, regional e internacional com relação a aspectos étnicos, sociais, culturais e de biossegurança para o uso e liberação destes métodos de controle de vetores.Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods

    Microsatellite loci cross-species transferability in Aedes fluviatilis (Diptera:Culicidae): a cost-effective approach for population genetics studies

    Get PDF
    Abstract\ud \ud Background\ud \ud Aedes fluviatilis is a neotropical mosquito species thought to be a potential vector of Yellow Fever viruses and can be infected with Plasmodium gallinaceum in laboratory. A better understanding of its genetic structure is very important to understand its epidemiologic potential and how it is responding to urbanization. The objective of this study was to survey the transferability of microsatellites loci developed for other Aedes to Ae. fluviatilis.\ud \ud \ud \ud Findings\ud We tested in Ae. fluviatilis 40 pairs of primers known to flank microsatellite regions in Aedes aegypti, Aedes albopictus and Aedes caspius, and found eight loci that amplified consistently. The number of alleles per locus ranged from 2 to 15, and the expected heterozygosity ranged from 0.09 to 0.85.\ud \ud \ud Conclusions\ud We found that several microsatellite primers successfully transferred to Ae. fluviatilis. This finding opens avenues for cost-effective optimization of high-resolution population genetic tools.The authors would like to thank the Fundação de Amparo à Pesquisa do\ud Estado de São Paulo (FAPESP) for providing financial support (Grant 2013/\ud 15313-4). LCM is a fellow of FAPESP (2013/22347-2). ABBW is the recipient of\ud a postdoctoral fellowship from FAPESP (2012/19117-2)

    Different domains of dengue research in Malaysia: A systematic review and meta-analysis of questionnaire-based studies

    Get PDF
    This review provided a systematic overview of the questionnaire-related dengue studies conducted in Malaysia and evaluated their reliability and validity used in the questionnaires. An extensive literature search was conducted using various electronic databases, including PubMed, EMBASE, Medline, and ScienceDirect. Systematic reviews and meta-analysis (PRISMA) were selected as the preferred item reporting method. Out of 88 identified dengue-related, 57 published from 2000 to April 2020 met the inclusion criteria and were included. Based on the meta-analysis, a poor mean score was obtained for knowledge (49%), attitude (44%), and preventive practice (55%). The study showed that the level of knowledge on cardinal signs and modes of transmission for dengue virus were highest among health care workers, followed by students (international and local) and lastly community residents. In treatment-seeking behaviours, only half of the respondents (50.8%) would send their child to the nearest health clinics or hospitals when a child became restless or lethargic. The acceptance rate for dengue vaccine, bacteria (Wolbachia), as a vector for dengue control and self-test diagnostic kit for dengue showed considerably high (88.4%, 70%, and 44.8%, respectively). Health belief model (HBM) constructs, such as perceived barriers, perceived severity, perceived susceptibility, self-efficacy, and perceived benefit influence prevention practices. Lastly, only 23 articles (40.3%) had piloted or pretested the questionnaire before surveying, in which three reported Cronbach’s alpha coefficient (0.70–0.90). A need for active participation of communities and healthcare personnel, promotion of awareness, and safe complementary medicines, as well as assessment of psychometric properties of questionnaire use in dengue surveys in Malaysia, in order for assessing dengue reliably and valid

    Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX

    Get PDF
    The diel biting activity of Aedes (Stegomyia) aegypti (L) populations was extensively investigated in the early 1900s to gain more information on the biology of Ae. aegypti, and this information was used to devise effective approaches to controlling populations of this species and protect the human population from widespread arbovirus outbreaks. However, few contemporary studies are available regarding the diel activity patterns of Ae. aegypti. To assess the diel activity patterns of Ae. aegypti in southern Florida and Texas, we conducted 96-h uninterrupted mosquito collections once each month from May through November 2019 in Miami, Florida, and Brownsville, Texas, using BG-Sentinel 2 Traps. The overall diel activity pattern in both cities was bimodal with morning and evening peak activity between 7:00 and 8:00 and between 19:00 and 20:00. There were significant daily, monthly, seasonal, and site-specific differences in activity patterns, but these differences did not affect the overall peak activity times. These differences suggest daily, monthly, seasonal, and site-specific variations in human exposure to Ae. aegypti. Our observations can be used in planning and executing Ae. aegypti vector control activities in southern Florida and southern Texas, specifically those targeting the adult mosquito populations

    Genetic Control of Mosquitoes: population suppression strategies

    Get PDF
    Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods

    Controle genético de mosquitos: estratégias de supressão de populações

    No full text
    Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL) offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods

    Paratransgenesis: a promising new strategy for mosquito vector control

    No full text
    Abstract The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host’s reproduction; (c) reducing the vector’s competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated pest management tool for mosquito control

    Microgeographic Wing-Shape Variation in Aedes albopictus and Aedes scapularis (Diptera: Culicidae) Populations

    No full text
    Aedes albopictus and Aedes scapularis are vectors of several arboviruses, including the dengue, chikungunya, and Rocio virus infection. While Ae. albopictus is a highly invasive species native to Asia and has been dispersed by humans to most parts of the world, Ae. scapularis is native to Brazil and is widely distributed in the southeast of the country. Both species are highly anthropophilic and are often abundant in places with high human population densities. Because of the great epidemiological importance of these two mosquitoes and the paucity of knowledge on how they have adapted to different urban built environments, we investigated the microgeographic population structure of these vector species in the city of São Paulo, Brazil, using wing geometric morphometrics. Females of Ae. albopictus and Ae. scapularis were collected in seven urban parks in the city. The right wings of the specimens were removed and digitized, and eighteen landmarks based on vein intersections in the wing venation patterns were used to assess cross-sectional variation in wing shape and size. The analyses revealed distinct results for Ae. albopictus and Ae. scapularis populations. While the former had less wing shape variation, the latter had more heterogeneity, indicating a higher degree of intraspecific variation. Our results indicate that microgeographic selective pressures exerted by different urban built environments have a distinct effect on wing shape patterns in the populations of these two mosquito species studied here
    • …
    corecore