8,444 research outputs found

    A Type Language for Calendars

    Get PDF
    Time and calendars play an important role in databases, on the Semantic Web, as well as in mobile computing. Temporal data and calendars require (specific) modeling and processing tools. CaTTS is a type language for calendar definitions using which one can model and process temporal and calendric data. CaTTS is based on a "theory reasoning" approach for efficiency reasons. This article addresses type checking temporal and calendric data and constraints. A thesis underlying CaTTS is that types and type checking are as useful and desirable with calendric data types as with other data types. Types enable (meaningful) annotation of data. Type checking enhances efficiency and consistency of programming and modeling languages like database and Web query languages

    A Reasoner for Calendric and Temporal Data

    Get PDF
    Calendric and temporal data are omnipresent in countless Web and Semantic Web applications and Web services. Calendric and temporal data are probably more than any other data a subject to interpretation, in almost any case depending on some cultural, legal, professional, and/or locational context. On the current Web, calendric and temporal data can hardly be interpreted by computers. This article contributes to the Semantic Web, an endeavor aiming at enhancing the current Web with well-defined meaning and to enable computers to meaningfully process data. The contribution is a reasoner for calendric and temporal data. This reasoner is part of CaTTS, a type language for calendar definitions. The reasoner is based on a "theory reasoning" approach using constraint solving techniques. This reasoner complements general purpose "axiomatic reasoning" approaches for the Semantic Web as widely used with ontology languages like OWL or RDF

    A Reasoner for Calendric and Temporal Data

    Get PDF
    Calendric and temporal data are omnipresent in countless Web and Semantic Web applications and Web services. Calendric and temporal data are probably more than any other data a subject to interpretation, in almost any case depending on some cultural, legal, professional, and/or locational context. On the current Web, calendric and temporal data can hardly be interpreted by computers. This article contributes to the Semantic Web, an endeavor aiming at enhancing the current Web with well-defined meaning and to enable computers to meaningfully process data. The contribution is a reasoner for calendric and temporal data. This reasoner is part of CaTTS, a type language for calendar definitions. The reasoner is based on a \theory reasoning" approach using constraint solving techniques. This reasoner complements general purpose \axiomatic reasoning" approaches for the Semantic Web as widely used with ontology languages like OWL or RDF

    Efficient Heuristic for Resource Allocation in Zero-forcing OFDMA-SDMA Systems with Minimum Rate Constraints

    Full text link
    4G wireless access systems require high spectral efficiency to support the ever increasing number of users and data rates for real time applications. Multi-antenna OFDM-SDMA systems can provide the required high spectral efficiency and dynamic usage of the channel, but the resource allocation process becomes extremely complex because of the augmented degrees of freedom. In this paper, we propose two heuristics to solve the resource allocation problem that have very low computational complexity and give performances not far from the optimal. The proposed heuristics select a set of users for each subchannel, but contrary to the reported methods that solve the throughput maximization problem, our heuristics consider the set of real-time (RT) users to ensure that their minimum rate requirements are met. We compare the heuristics' performance against an upper bound and other methods proposed in the literature and find that they give a somewhat lower performance, but support a wider range of minimum rates while reducing the computational complexity. The gap between the objective achieved by the heuristics and the upper bound is not large. In our experiments this gap is 10.7% averaging over all performed numerical evaluations for all system configurations. The increase in the range of the supported minimum rates when compared with a method reported in the literature is 14.6% on average.Comment: 8 figure

    L'amélioration du sorgho et du petit mil en Afrique

    Get PDF

    Projet d'amélioration des mils : sous-dossier technique

    Get PDF
    • …
    corecore