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Abstract. Calendric and temporal data are omnipresent in countless
Web and Semantic Web applications and Web services. Calendric and
temporal data are probably more than any other data a subject to
interpretation, in almost any case depending on some cultural, legal,
professional, and/or locational context. On the current Web, calendric
and temporal data can hardly be interpreted by computers. This arti-
cle contributes to the Semantic Web, an endeavor aiming at enhancing
the current Web with well-defined meaning and to enable computers to
meaningfully process data. The contribution is a reasoner for calendric
and temporal data. This reasoner is part of CaTTS, a type language for
calendar definitions. The reasoner is based on a “theory reasoning” ap-
proach using constraint solving techniques. This reasoner complements
general purpose “axiomatic reasoning” approaches for the Semantic Web
as widely used with ontology languages like OWL or RDF.

1 Introduction

Calendric and temporal data are omnipresent in countless Web and Semantic
Web applications and Web services, e.g. to schedule appointments, to book flights
and hotels, to plan journeys, and to organize web-based commerce. Most existing
or foreseen mobile computing applications refer to not only locations but also
time. E.g. a mobile application listing pharmacies in the surrounding of a user
will preferably only mention those pharmacies that are currently open. The
calendric and temporal data involved in such applications are probably more
than any other data a subject to interpretation, in almost any case depending
on some cultural, legal, professional, and/or locational context [1]. On the current
Web, such data can hardly be interpreted by computers.

The vision of the Semantic Web is to enrich the current Web with well-
defined meaning and to enable computers to meaningfully process such data.
This article contributes to the Semantic Web vision with a reasoner for calendric
and temporal data. This reasoner is part of CaTTS, a type language for calendar
definitions. CaTTS provides with language constructs to conveniently model
calendars like the Gregorian and Hebrew calendars or some professional calendar
(e.g. of a university) and calendric types like “month”, “week”, or “teaching
term” as well as constraints on calendric data referring to such types, e.g. “exams
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are within the last week of a teaching term”. CaTTS is presented in [2, 3], two
articles that focus CaTTS’ data and constraint modeling aspects.

The subject of this article is CaTTS’ reasoner. This reasoner is intended
to answer queries over a wide range of temporal and calendric constraints over
calendric and temporal data like “what are the possibilities to schedule some
student’s lectures and courses in a teaching term”. Such queries can be formu-
lated in CaTTS’ constraint language CaTTS-CL. CaTTS’ reasoner is based on
a “theory reasoning” approach [4, 2, 5] using constraint programming techniques
for problems expressed in CaTTS-CL. This reasoner complements general pur-
pose “axiomatic reasoning” approaches for the Semantic Web, widely used with
ontology languages like RDF [6] or OWL [7]. CaTTS’ reasoner refers to and
relies on user-defined calendric types of calendars specified in the definition lan-
guage CaTTS-DL. This makes search space restrictions possible that would not
be possible if calendars and temporal notions would be specified in a generic for-
malism such as first-order logic and processed with generic reasoning methods
such as first-order logic theorem provers.

2 CaTTS in a Nutshell

CaTTS consists of two languages, CaTTS-DL, a type definition language and
CaTTS-CL, a constraint language.

2.1 The Definition Language CaTTS-DL

CaTTS-DL, CaTTS’ definition language, consists of two language parts, CaTTS-
TDL (for type definition language) and CaTTS-FDL (for format definition lan-
guage). CaTTS-DL provides means to declaratively define calendric types and
calendars, themselves “typed” after calendar signatures as well as date formats
for calendric types to user-friendly rendering and parsing calendric data.

In CaTTS-TDL, any calendric type is defined by a (user-defined) predicate,
i.e. the elements belonging to a calendric type must fulfill the conditions defined
by such a predicate. E.g. a predicate defining a calendric type “working day”
may restrict days to those which are between each week’s Monday and Friday.
Each such type is (directly or indirectly) related to any other type defined in a
CaTTS-TDL calendar specification. E.g. the Gregorian calendar can be modeled
in CaTTS-TDL as follows:

calendar Gregorian :GREGORIAN =
cal

type second ;
type minute = aggregate 6 0 second @ second ( 1 ) ;
. . .
type month = aggregate

31 day named january ,
alternate month( i )
| ( i div 1 2 ) mod 4 == 0 &&

(( i div 1 2 ) mod 1 0 0 ! = 0 | | ( i div 1 2 ) mod 400 == 0) −> 29 day
| otherwise −> 28 day

end named february , . . . , 3 1 day named december @ day ( 1 ) ;
type year = aggregate 1 2 month @ month ( 1 ) ;



type working day = se lect day ( i ) where

relat ive i in week >= 1 && relat ive i in week <= 5;
type weekend day = day\working day ;

end

The above CaTTS-DL calendar specification1 consists of a set of type definitions
(each identified by the keyword type followed by an identifier). The first type de-
fined is second. It has no further properties, i.e. it is a user-defined parameterless
type constructor. The type minute is defined from the type second by specifying
a predicate stating that a minute consists of 60 seconds2 (denoted aggregate

60 second) and such that the minute that has index 1, i.e. minute(1) com-
prises all seconds between second(1) in second(60) (denoted @ second(1)).
In CaTTS-DL, the type minute is an aggregation subtype of the type second

(written minute � second), because each week can be defined as an interval
of days. Any further type definition follows the same pattern. The definitions
are straightforward following the rules of the Gregorian calendar [8]. The type
month is defined by a repeating pattern of the twelve Gregorian months. February
which is one day longer in each Gregorian leap year is defined by an additional
pattern which specifies the leap year rule for the Gregorian calendar using the
CaTTS language construct alternate...end. The type definition of the type
working day is derived from that of the type day by specifying a predicate stat-
ing that a working day is one of the first five days (i.e. Monday to Friday) in a
week (denoted relative i in week >= 1 && relative i in week <= 5).
In CaTTS-DL, the type working day is an inclusion subtype (in the common
set-theoretic sense) of the type day (written working day ⊆ day), because the
set of working days is a subset of the set of days. The type weekend day is also
an inclusion subtype of type day, selecting those days which are not working
days (denoted day\working day, where “\” is a CaTTS-DL type constructor
for exception types) The syntax of CaTTS is given in Appendix A.

The above exemplified CaTTS-DL calendar specification defines a calendar
as a “type” that, in principle, can be used with any Web language (e.g. XQuery
or XSLT), using calendar data enriched with type annotations after this CaTTS-
DL calendar. CaTTS’ type checker [9] is used to check the calendar data typed
after a CaTTS-DL calendar in such programs or specifications, thus, providing
a means to annotate and interpret such data. Particularities like time zones can
be easily expressed in a CaTTS-DL as shown in [2]. Further CaTTS-DL calendar
specifications, in particular the Islamic and Hebrew calendars and variations of
the Gregorian calendar like the Japanese calendar are given in [2, 1].

With most applications, one would appreciate not to specify dates and times
using indices of the elements of CaTTS types like day(23) or second(-123),
but instead date formats like “5.10.2004” (common in Germany for 5th October
2004), “10/05/2004” (common in the US for 5th October 2004), or “Tue Oct 5
16:39:36 CEST 2004”. CaTTS-FDL provides a means for defining date formats.

1 This calendar specification is bound to the identifier Gregorian and must match the
calendar signature GREGORIAN.

2 In CaTTS-DL, it is also possible to define a type minute including leap seconds as
shown in [2].



Similar to calendric types, date formats are specified by a (user-defined) predi-
cate. E.g. the possible values for day, month, and year numbers in a Gregorian
date (according to the internal indices of the elements of type day defined in
the CaTTS-DL calendar specification given above) can be specified as follows in
CaTTS-FDL:

format date : day = d "." m "." y where

date within year (y ) ,
date within M i s 1 month ,
m == relat ive index M in year ,
d == relat ive index date in month ;

end

This CaTTS-FDL specification binds the identifier date of type day to a date
format of a (relative) day value, followed by a dot, followed by a (relative) month
value, followed by a dot, followed by a (absolute) year value, e.g. "11.2.2005".
The variable date must satisfy the following predicates for d, m, and y. The
predicate date within year(y) restricts date to be within the year indexed
by y (e.g. "11.2.2005" within 2005). Similarly, the predicate date within M

is 1 month restricts date to be within a month M. The (relative) month value
M must be the mth in a year (denoted m == relative index M in year), and
the (relative) day value date must be the dth day in a month.

2.2 The Constraint Language CaTTS-CL

CaTTS-CL, CaTTS’ constraint language, is typed after CaTTS-DL type def-
initions. CaTTS-CL is a language for declaratively expressing a wide range of
temporal and calendric problems over domains of different calendric type defined
in CaTTS-DL. Such problems are then solved by CaTTS-CL’s constraint solver.
Given a CaTTS-DL specification of the Gregorian calendar (with types “day”,
“working day”, and “month”) and CaTTS-FDL format specifications for types
“day” and “month”, one can specify in CaTTS-CL a problem like planning a
meeting of three consecutive working days after 22nd April 2005 that is finished
before May 2005. This problem can be expressed in CaTTS-CL as follows:

Meeting i s 3 working day &&
Meeting after " 22.04.2005 " && Meeting before " 05.2005 "

The variable Meeting represents the domain of three-day long working day in-
tervals (denoted Meeting is 3 working day). The constraint Meeting after

"22.04.2005" restricts the domain of the variable Meeting to those three-day
long working day intervals starting after the day "22.04.2005". Finally, the con-
straint Meeting before "05.2005" restricts the domain of Meeting to those
intervals ending before the month "05.2005".

An answer to a problem specified in CaTTS-CL is itself a CaTTS-CL con-
straint, that can no longer be simplified. Such an answer corresponds to the
result computed by CaTTS’ constraint propagation algorithm (cf. Section 3).
The answer to the above problem in CaTTS-CL is given by the following:

Meeting after " 22.04.2005 " && Meeting before " 05.2005 " &&
Meeting i s 3 working day && start Meeting i s " 25.04.2005 " . . " 27.04.2005 "



CaTTS’ constraint solver adds a new constraint on the domain of the variable
Meeting: start Meeting is "25.04.2005".."27.04.2005". This constraint
specifies that the possible starting point for the three-working-day long meeting
must be one working day out of the finite domain (represented by an inter-
val) between working day "25.04.2005" and "27.04.2005". This constraint
is inferred by propagating the constraints Meeting after "22.04.2005" and
Meeting before "05.2005". Since Meeting must be a working day, it can not
start before working day "25.04.2005" (according to the constraint Meeting
after "22.04.2005", where "22.04.2005" is a day). According to the con-
straint Meeting before "05.2005", Meeting must end not later than working
day "29.04.2005", i.e. the latest working day that is before "05.2005". One
solution to the above given problem (for the 3 working day long meeting) is
"27.04.2005" to "29.04.2005". Note that answers and solutions are closely
related: an answer is a compact, constraint-based, representation of several solu-
tions (e.g. the above given answer contains 3 possible solutions). In some cases,
an answer might contain unsatisfiable parts. As a consequence, solutions are nec-
essary. Solutions are computed by searching (using back tracking) the answer.
Note further that CaTTS-CL provides the user with the possibility to ask the
system to compute one (or more) possible solutions from an answer.

A CaTTS-CL program is a finite conjunction (expressed by the keyword &&)
of CaTTS-CL constraints. CaTTS’ complete syntax, including the syntax of
CaTTS-CL is given in Appendix A.

month

week

working day

day17 18
↑

18.4.2005 (Monday)

19 20 . . . 30 31 32
↑

1.5.2005 (Sunday)

12 13 . . . 20 21 22

4 5

1 (April 2005)

Fig. 1. Illustration of the calendric types used in Example 1 with internal indexing.

3 CaTTS’ Constraint Solver

Consider the following (simple) appointment scheduling problem.

Example 1. A person wants to plan a 3 working day long meeting after 22nd
April 2005 and before May 2005. A colleague’s visit of 5 days within the last two
weeks in April 2005 must overlap with the planned meeting.

The problem described in Example 1 is illustrated in Figure 1.
To properly analyze and solve such a problem, we are led to an abstract ana-

lyze of activities3 that take time, such as “meeting” and “visit”. Such activities

3 The notion “activity” is frequently used in Constraint Programming for objects
having a temporal extent.



may have different calendric types, e.g. “meeting” has type “working day” (i.e.
Monday to Friday) while “visit” has type “day”. Those activities are related in
time – either to (metric) temporal information, e.g. the meeting must be “be-
fore” 22nd April 2005 or (relatively) to each other, e.g. the visit must “overlap”
the meeting.

Intuitively, a solution to the problem given in Example 1 must fulfill each of
the temporal relationships stated on the activities. Formalizing this simple ap-
pointment scheduling problem as a Constraint Satisfaction Problem (CSP) [10],
i.e. as a finite set of variables, a finite set of values that each variable can take
(i.e. the domains of the variables), and a finite set of constraints that specify
which values the variables can take simultaneously, a solution to the problem
given in Example 1 is an assignment of values taken from the domains of the
variables, one to each variable, such that each of the specified constraints is
satisfied. A constraint is satisfied if none of its domains is empty. In a conven-
tional CSP, the domains are all taken from the same set, e.g. integers or reals.
However, in CaTTS-CL, the domains of activities may be taken from different
calendric types (i.e. from different sets) which rely on and refer to types defined
in CaTTS-DL calendar specifications. Fortunately, using CaTTS-DL’s language
constructs, the values of such calendric types are defined using integer indices
relative to the index set of some other type defined in CaTTS-DL. Thus, in
CaTTS-CL, CSPs can be modeled over integer domains (representing elements
of different calendric types), involving CaTTS-specific constraints. Those specific
constraints (called conversion constraints, introduced in Section 3.1) represent
the relationships between different calendric types defined in CaTTS-DL.

The main aspect of constraint solving is to transform a given CSP into an
equivalent CSP, i.e. the constraints of the CSP have the same set of solutions
but a (considerably) smaller search space. Let us consider what this means for
the problem described in Example 1: each variable represents a domain typed
after a calendric type defined in a CaTTS-DL calendar specification. “Meet-
ing” represents three working day long intervals. “Visit” represents 5 day long
intervals. CaTTS-CL time constraints (e.g. “after”), stated in the problem illus-
trated in Example 1 are applied as long as it is possible to reduce the domains
of “meeting” and “visit”. This process of domain reduction also takes advantage
of the different calendric types of the variables and constants used to describe
the problem given in Example 1 by applying conversion constraints (cf. Section
3.1), characteristic to CaTTS. This process reduces the domain of “meeting”
such that its possible starting working days must be between “25.4.2005” and
“27.4.2005” and the domain of “visit” such that its possible starting days must
be between “22.4.2005” and “24.4.2005”. One solution to the problem given
in Example 1 (computed by searching the reduced domains of “meeting” and
“visit” such that each of the constraints is satisfied) is: the colleague arrives at
22nd April 2005 and leaves (5 days later) at 26th April 2005, and the meeting
starts at 25th April 2005 and ends (3 working days later) at 27th April 2005.



3.1 Calendric Types and Conversion Constraints

Recall that in Constraint Programming variables are used to represent domains.
A domain is a (finite) set of values of a type like integers. However, in the
case of CaTTS-CL, variables represent domains which are finite sets of values
of any calendric type defined in CaTTS-DL. Therefore, we need a means to
“compare” such variables. Fortunately, this information is already provided with
each CaTTS-DL type definition. Recall that a CaTTS-DL type is declared by a
(user-defined) predicate that either defines an aggregation subtype, e.g.

type week = aggregate 7 day @ day ( 1 ) ;

i.e. week � day (read “week is an aggregation subtype of day”) or an inclusion
subtype, e.g.

type working day = se lect day( i ) where

relat ive i in week >= 1 && relat ive i in week <= 5;

i.e. working day ⊆ day (read working day is an inclusion subtype of day).
The predicate 7 day @ day(1) of type week specifies which day intervals de-
fine weeks; and the predicate relative i in week => 1 && relative i in

week <= 5 of type day specifies which days are also working days.

Joins. To ensure that not only the elements of a calendric type and its imme-
diate supertype (e.g. according to Figure 2, day is the immediate supertype of
week) can be compared, but also any pair of calendric types defined in one (or
more) CaTTS-DL calendar specifications and used in a CaTTS-CL program, a
generalized subtype relation for calendric types, in fact the union of the aggre-
gation and the inclusion relations [2] is defined.

Definition 1. Let σ and τ be calendric types defined in CaTTS-DL.
σ is a subtype of τ , denoted σ ≤ τ , iff either σ � τ or σ ⊆ τ , i.e. σ ≤ τ :=
σ � τ ∪ σ ⊆ τ .

An example subtype relation of calendric types defined in CaTTS-DL is given
in Figure 2.

week
≤

month ≤

�
�

day
@

@

working day
≤

Fig. 2. Subtype relation of some calendric types defined in CaTTS-DL.

CaTTS’ subtype relation “≤” induces a partial order on the calendric types
defined in a CaTTS-DL calendar specification. A formalization of calendars that
can be expressed in CaTTS-DL is given in Definition 2.

Definition 2. A calendar C = {τ1, . . . τn} is a finite set of calendric types such
that there exists a τi ∈ C and for all τj ∈ C, i, j ∈ {1...n} and i 66= j, τj ≤ τi.



Note that a finite set SC of CaTTS-DL calendars is also a calendar according
to Definition 2, if either the τi (according to Definition 2) of the CaTTS-DL
calendars in SC are aligned, i.e. identical except for the numbering of their indices
or there exists a type τ0 which is a supertype of the τi (according to Definition
2) of the calendars belonging to SC .

To compare the domains of two variables of different types τs and τt during
constraint solving in CaTTS, the join of τs and τt is computed and the domains
are converted to the equivalent domains in the join type. A join in CaTTS is
slightly weaker than the ordinary lattice join, which only allows for the first con-
dition of Proposition 1. The second of Proposition 1 is an extension to deal with
CaTTS-DL calendars which are not (always) lattices. This condition forces the
join to be the smallest possible unique4 upper bound. E.g. according to Figure
2, the join of types working day and month is day. For each pair of calendric
types defined in a CaTTS-DL calendar specification (according to Definition 2)
such a join exists:

Proposition 1. Let (C,≤) be a calendar.
For any pair of calendric types τt and τs of C, there exists a join χ ∈ C such
that τs ∨ τt = χ, i.e. τs ≤ χ, τt ≤ χ, and for all σi ∈ C with τt ≤ σi and τs ≤ σi,
either

1. χ ≤ σi or
2. σi < χ, and there exists another σk ∈ C with τs, τt ≤ σk, σk < χ and σi, σk

being incomparable.

Proof. For a pair of types τ and σ of calendar C, consider the set of upper
bounds U(τ, σ) = {υ|τ ≤ υ, σ ≤ υ}.
(Existence) If τs = τt = α, with α being the top element of C, then U(τs, τt) =
{α}, and our proposition is satisfied through (i). So, if τs ∨ τt exists, so does
τ ′
s ∨ τt, with τ ′

s direct subtype of τs: If τs ≤ τt so is τ ′
s ≤ τt and in this case

τt is the join, as τt ∈ U(τ ′
s, τt) satisfies (i). In case of τt < τs, either τt ≤ τ ′

s

and thus τ ′
s ∈ U(τ ′

s, τt) satisfies (i), or else τt and τ ′
s are incomparable and thus

τs ∈ U(τ ′
s, τt) satisfies (i). Finally, if τt and τs are incomparable, τ ′

s cannot be
greater than or equal to τt, because then τt would have to be less than of equal
τs; either τ ′

s, too, is incomparable to τt and thus τ ′
s ∨ τt = τs ∨ τt ∈ U(τ ′

s, τt)
satisfies (ii), or else τ ′

s ≤ τt and thus τt ∈ U(τ ′
s, τt) satisfies (i).

(Uniqueness) Be χ = τs ∨ τt. Let’s assume χ′ would also qualify as a join of τs

and τt. If χ′ and χ were incomparable, then neither χ′ ≤ χ nor χ < χ′ and thus
χ′ violates (i) and (ii). If χ′ < χ, then χ must have satisfied (ii), thus exist an
upper bound σk incomparable to χ′; however, all upper bounds are comparable
to χ′ if it is a join (i,ii). Finally, if χ < χ′, then χ′ must satisfy (ii), thus exist
an upper bound σk incomparable to χ, failing analogously. ut

Informally, an algorithm to find a join (according to Proposition 1) consists in
finding all join-candidates for a pair of types. If more than one such a candidate

4 in terms of equality



exists, find the join for all those candidates. A reference implementation of the
algorithm is given in Appendix C.

With Proposition 1, conversions, and, thus, constraint solving over arbitrary
calendric domains (as long as their types are properly defined in a CaTTS-DL
calendar specification) is ensured in CaTTS.

Conversions. CaTTS’ constraint solver treats time constraints like “after” as
ordinary finite domain constraints. To deal with domains of different calendric
types, the domains need to be converted. For this purpose, CaTTS provides
with conversion constraints. The basic idea of those conversion constraints is the
following: assume that the variables Xweek and Yday with domains DX

week (of type
week) and DY

day (of type day) participate in the CaTTS-CL constraint after. To
propagate this CaTTS-CL constraint, CaTTS’ constraint solver provides with
a preprocessor. During preprocessing, the join (according to Proposition 1) of
types week and day (i.e. day) is inferred and conversion constraints for Xweek

and Yday according to the join are added. Preprocessing refers to and relies on
the typing and subtyping derivations inferred during type checking CaTTS-CL
programs [9].

The conversion constraints propagate new variables with domains in the same
type equivalent to the initial domains (i.e. the converted domains specify the
same set of solutions). The conversion constraints are implemented by applying
translation functions between CaTTS-DL subtypes. CaTTS’ translation func-
tions are given in Appendix B. In the following, the functioning of CaTTS’
conversion constraints is exemplified.

Example 2. The domains in this example refer to the calendric types illustrated
in Figure 1.

(i) Assume that the variable Xweek represents the domain of one week long
intervals starting in week 4 or 5 (denoted Xweek : 4..5+1). Applying the conver-
sion constraint for weeks and days (that uses the translation function generated
from the type predicate of type week, i.e. from 7 day @ day(1)) to Xweek,
Xweek in days represents the domain Xday : 18..25 + 7, i.e. 7 day long intervals
that must start between the first day in week 4 (i.e. 18) and the first day in week
5 (i.e. 25).

(ii) Assume that Xday represents the domain of 2 day long intervals starting
between day 23 and 28 (denoted Xday : 23..28 + 2). Applying the conversion
constraint for working days and days (that uses the translation function gen-
erated from the type predicate of type working day, i.e. from relative i in

week >= 1 && relative i in week <= 5) to Xday, Xday in working days
represents the following domain Xworking day : 17..19+2, i.e. 2 working day long
intervals that must start between that working day succeeding day 23 (i.e. 17)
and working day 19 such that Xworking day end on that working day preceeding
day 30, i.e. the maximal ending day of Xday.

(iii) Applying the conversion constraint for weeks and days to Xday : 23..28+2
fails (i.e. the constraint is inconsistent); no two day long interval may represent
a week.



3.2 Activities and Time Constraints

In CaTTS-CL, we only take into account the fact that activities like those of
Example 1 take a finite continuous period of time over the reals, expressed in a
calendric type defined in CaTTS-DL. Note that constraint reasoning on possibly
non-continuous activities is a further (more complex) reasoning problem not
considered in CaTTS. Thus, in CaTTS-CL activities have a duration and can
be identified with closed, non-empty intervals of (integer) indices of a calendric
type. This reflects a widespread common-sense understanding of time having a
duration. However, CaTTS can deal with time point-like data like ”22.4.2005”.
For this purpose, CaTTS’ activities can be represented either as events or as
tasks.5 Events represent single values of a calendric type like ”22.4.2005” of
type “day” or ”05.2005” of type “month”. Events are modeled by finite domain
variables with a calendric type. E.g. in CaTTS-CL X is 1 day specifies that
the variable X represents an event of type day. Tasks represent intervals that
have a starting point and a duration of a calendric type like “form "22.4.2005"

to "24.4.2005"” of type day or “the last two weeks in February 2005” of type
week. A starting point is modeled by a finite domain with a calendric type and
the duration by an integer interval6. E.g. in CaTTS-CL X is 5 day specifies
that the variable X represents tasks (with duration 5 days) of type day.

X
sX eX

Y
sY eY

X
sX eX Y

sY eY

time constraints:

X before Y

X overlaps Y

definition on endpoints:

sX ≤ eX < sY ≤ eY

sX < sY < eX < eY

Fig. 3. Illustration of some of CaTTS-CL’s time constraints used in Example 1.

In CaTTS-CL, time constraints are used to model conditions that must hold
between activities like “before” and “overlaps”. The time constraints provided
with CaTTS-CL are, in particular, the thirteen interval relations introduced by
Allen [11] (some are illustrated in Figure 3). Additionally, metric relations like
“shift” (e.g. to shift a day forward by 3 days in time) are supported. CaTTS’
complete syntax including the time constraints is given in Appendix A.

All CaTTS-CL time constraints are implemented by binary finite domain
constraints on the ending points between activities of the same calendric type.
Intuitively, the starting point and the ending point of an event are the same, e.g.
the interval ”22.4.2005” starts and ends at 22nd April 2005. Thus, the duration
of an event is 1. Since each task is modeled by its starting point and its duration,
the ending point can be computed by adding the duration to the starting point.

5 The notions “event” and “task” are taken from research on “planning” and “schedul-
ing”, well-known kinds of CSPs over finite domains [10].

6 Durations need to be represent by integer intervals to meet conversion constraints.
E.g. converting months to days yields in a varying duration of day intervals.



E.g. if the starting point of task X (of type day) is represented by the finite
domain "18.04.2005".."27.04.2005" and its duration is 5 (days), then its
possible ending points can be commuted by adding the duration to the possible
starting points, i.e. "22.04.2005".."01.05.2005".

3.3 CaTTS’ Constraint Propagation Algorithm

The main idea of constraint propagation is to reduce a given CSP to an equiv-
alent CSP, i.e. the constraints of the CSP have the same set of solutions, but
they are easier to solve. Algorithms that achieve such a reduction usually aim
at reaching some form of local consistency. Local consistency means that some
subparts of the considered CSP are consistent (i.e. have a solution). Achieving
local consistency consists either in reducing the domains of the considered vari-
ables or in reducing the considered constraints. The notion of local consistency
chosen for CaTTS is arc-consistency [10]:

Definition 3. A constraint C ⊆ D1 × . . .×Dn on the variables x1,. . . , xn with
respective domains D1,. . . , Dn is arc-consistent, if for all i ∈ {1, . . . , n} and
for all possible values of xi in Di, there exists values for all variables xj (j 6= i)
in the respective domains Dj such that C is satisfied.

A CSP is arc-consistent if all its constraints are arc-consistent.

Intuitively, a constraint C is arc-consistent if for every involved domain each
value of it participates in a solution to C. The algorithm implementing arc-
consistency in CaTTS is based on the logical formulation of Definition 3:

If x1 ∈ D1 ∧ . . . ∧ xi ∈ Di ∧ . . . ∧ xn ∈ Dn ∧ C(x1, . . . , xn) → xi ∈ D′
i,

then Di ∩D′
i is the new domain of xi. This notion of arc-consistency formulates

the terminates criterion for CaTTS’ constraint propagation algorithm, i.e. the
algorithm terminates (and returns an equivalent but smaller CSP) if the CSP is
arc-consistent and fails otherwise. Note that since constraint propagation results
in a locally consistent CSP, an answer (i.e. the result of constraint propagation)
to a CSP specified in CaTTS-CL might be inconsistent. To ensure (global) con-
sistency, solutions must be computed by searching (using back tracking) the
reduced domains.

In what follows, we discuss a few rules that allow us to manipulate time
constraints and conversion constraints over activities (that represent finite do-
mains of different calendric types). These rules, together with the above given
formalization of a local consistency notion, define CaTTS’ constraint propagation
algorithm.

Reduction Rules for Time and Conversion Constraints – Constraint

Propagation. CaTTS’ time constraints are implemented by finite domain con-
straints on activity ending points with activities of the same calendric type
(which is defined in CaTTS-DL). To relate activities of different calendric types
in a CaTTS-CL program, conversion constraints are used. Conversion constraints
are implemented by applying translation functions on activity domains. Those



translation functions rely on and refer to typing and subtyping derivations in-
ferred from type checking CaTTS-CL programs [9]. CaTTS’ translation functions
are given in Appendix B.

The time constraints provided with CaTTS-CL are Allen’s thirteen interval
relations [11] as well as some metric constraints like shifts, both implemented
on ending points. Since all those time constraints are implemented analogously
(cf. Appendix B), we only discuss the domain reduction rule for the constraint
before:

x, y ∈ τ, x before y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x before y; x ∈ lsx..(min(hsx + d+
x − 1, hsy − 1) − d+

x + 1) + (d−

x : d+
x ),

y ∈ max(lsy, lex + 1)..hsy + (d−

y : d+
y )

The activities x and y, both of type τ , represent finite domain constraints
of possible starting points and an integer (interval) of their durations (denoted
x ∈ lsx..hsx + (d−x : d+

x ), y ∈ lsy..hsy + (d−y : d+
y )). The ending points can

be computed by adding the duration to the starting points (i.e. lex := lsx +
d−x − 1 and hex := hsx + d+

x − 1). The constraint x before y is propagated
on the activities ending points (cf. Figure 3), i.e. the ending point of x must
be less than the starting point of y. E.g. applying the domain reduction rule
for before to the constraints x before y, x ∈ ”20.4.2005”..”25.4.2005” + 1, and
y ∈ ”18.4.2005”..”23.4.2005”+1 (both of type day according to Figure 1) yields
in reduced domains for x and y such that x ∈ ”20.4.2005”..”22.4.2005”+ 1 and
y ∈ ”21.4.2005”..”23.4.2005”+ 1.

CaTTS implements two different reduction rules for conversion constraints,
one for aggregation subtypes and one for inclusion subtypes. Both kinds of con-
version constraints depend on the corresponding aggregation (resp. inclusion)
subtype definitions given in some CaTTS-DL calendar specification. For each
subtype definition CaTTS automatically generates translation functions that
compute the starting and ending points (for σ ≤ τ denoted ps

σ→τ and ps
τ→σ and

pe
σ→τ and pe

τ→σ, reps.) and durations (denoted pd
σ→τ and pd

τ→σ) in the corre-
sponding subtype (resp. supertype). The generation rules for those translations
are given in Appendix B.

The domain reduction rule for aggregation subtypes is given in the following:

x ∈ σ, y ∈ τ, σ � τ convert(x, σ, y, τ ), x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

convert(x, σ, y, τ ), x ∈ ps
τ→σ(lsy)..(pe

τ→σ(hey) − d+
x + 1) + pd

τ→σ(d−

y : d+
y ),

y ∈ ps
σ→τ (lsx)..ps

σ→τ (hsx) + pd
σ→τ(d−

x : d+
x )

E.g. x ∈ ”21.4.2005”..”25.4.2005”+ 7 of type day and y ∈ ”W4 2005”..”W5
2005” + 1 of type week (according to Figure 1). Applying the previously given
reduction rule to x and y yields in a reduction of the domain of x such that
its starting points start 7 day long intervals corresponding to weeks of y, i.e.
x ∈ ”25.4.2005”..”25.4.2005”+ 7 and y such that the weeks correspond to the 7
day long intervals of x, i.e. y ∈ ”W5 2005”..”W5 2005” + 1.

The domain reduction rule for inclusion subtypes is given in the following:



x ∈ σ, y ∈ τ, σ ⊆ τ convert(x, σ, y, τ ); x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

convert(x, σ, y, τ ); x ∈ ps
τ→σ(lsy)..ps

τ→σ(hsy) + (pe
τ→σ(ley) − ps

τ→σ(lsy) + 1 :
pe

τ→σ(hey) − ps
τ→σ(hsy) + 1),

y ∈ pσ→τ (lsx)..pσ→τ (hsx) + (pσ→τ (lex) − pσ→τ(lsx) + 1 : pσ→τ (hex) − pσ→τ (hsx) + 1)

E.g. x ∈ ”23.4.2005”..”25.4.2005”+2 of type day (according to Figure 1) and
y should represent corresponding values in working day. Applying the previously
given reduction rule to x and y would yield in a reduction of the domain of x

such that it corresponds to working days, i.e. x ∈ ”25.4.2005”..”25.4.2005”+ 2
and y would be reduced to the same set, i.e. y ∈ ”25.4.2005”..”25.4.2005” + 2
(y, of course, of type working day).

Note that not considering domains of different calendric types would (i) not
allow for as much search space reduction as possible with conversion constraints,
hence, would be less efficient, and (ii) end up in loss of semantics (e.g. we won’t
no longer know which days are also working days). The two conversion con-
straints given above are corner stones of the CaTTS reasoner that, to the best
of the knowledge of the authors, have not been proposed elsewhere. As the given
examples show, they are very useful in reasoning on calendric and temporal data.
Arguably, to efficiently solve problems like the one given in Example 1, one has
to deal with a specific theory (that of calendars and time) which requires a spe-
cific treatment to make both search space restrictions and semantic support of
calendric types, thus gain in efficiency, possible. Using constraint programming
techniques to efficiently solve problems over calendar domains has similar ad-
vantages compared to those of “paramodulation” [12] used to efficiently reason
with equality in first-order languages.

4 Related Work

CaTTS complements data type definition languages and data modeling and rea-
soning methods for the Semantic such as XML Schema [13], RDF [6], and OWL
[7]: XML Schema provides a considerably large set of predefined time and date
data types dedicated to the Gregorian calendar whereas CaTTS enables user-
defined data types dedicated to any calendar. RDF and OWL are designed for
generic Semantic Web applications. In contrast, CaTTS provides with methods
specific to particular application domains, that of calendars and time. Thus,
CaTTS’ reasoner which is based on constraint solving techniques and dedicated
to CaTTS-DL calendar specifications is specific to calendar and time reasoning.

CaTTS departs from time ontologies such as the DAML Ontology of Time
[14] or time in OWL-S [15]: CaTTS’ constraint solver is dedicated to calendric
types defined in CaTTS-DL; this dedication makes both considerable search
space restrictions, hence gains in efficiency, and support of calendric and tempo-
ral data with different calendric types possible. While (time) ontologies follow the
(automated reasoning) approach of “axiomatic reasoning”, CaTTS is based on a
(specific) form of “theory reasoning” [4, 2, 5], a well-known example of which is



paramodulation [12]. Like paramodulation ensures efficient processing of equal-
ity in resolution theorem proving, CaTTS provides the user with convenient
constructs for calendric types and efficient processing of data and constraints
over those types.

CaTTS’ constraint solver is intended to be, in principle, used with any (Se-
mantic) Web language (e.g. XQuery, XSLT, OWL) as far as the calendric and
temporal data used is typed after calendric types defined in a CaTTS-DL cal-
endar specification. CaTTS-DL calendar specifications provide, similar to XML
Schemas, schemas for the data used, however, specific to time and calendars.

5 Conclusion

This article has introduced a reasoner based on constraint programming tech-
niques for calendric and temporal data. Such a reasoner is necessary for Semantic
Web applications and Web services like appointment and travel scheduling that
involved often complex temporal and calendric data.

The reasoner provides with novel constraints, the conversion constraints, to
convert domains over different calendric types without loss of semantics. Those
conversion constraints provide a natural way to obtain temporal constraint rea-
soning with domains of different calendric types. Note that temporal reasoning
with domains of different types is frequently considered in current research. The
authors believe that CaTTS offers a particularly convenient and intuitive manner
to solve temporal problems involving arbitrary calendric domains.

The proposed reasoner is part of the type language CaTTS: calendric types
defined in CaTTS’ definition language CaTTS-DL and referred to in CaTTS’
constraint language CaTTS-CL are used to automatically generate translation
functions which are applied when propagating conversion constraints on tempo-
ral and calendric data.

The proposed reasoner offers Semantic Web applications a means to benefit
from the advantages of constraint programming techniques when dealing with
specific theories like time and calendars. The reasoner can be, in principle, used
with any (Semantic) Web language.
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A The Syntax of CaTTS

c ::= constraints:
true
false
X is 1 τ event
X is τ task
X is n τ task + duration n ∈

�

X intervalC Y interval constraint
e intervalC Z
X metricC Y metric constraint
e metricC Z
c && c conjunction



e ::= expressions:
X variable
d CaTTS-FDL date
τ(i) part, i ∈ �
n τ duration, n ∈

�

[e..e] endpoint interval
e upto e duration interval
e downto e duration interval
binOp e e binary operation
unOp e unary operation

binOp ::= + | − | ∗ | mod | div | shift forward | shift backward | min |
max | avg | extend by | shorten by | relative to | relative in

unOp ::= duration | begin | end | index |
intervalC ::= equals | before | after | during | contains | starts | started by |

finishes | finished by | meets | met by | overlaps | overlapped by |
within | on or before | on or after

metricC ::= == | <= | < | > | >= | ! =

τ ::= type expressions:
reference (user-def. or predef.) reference type
refinement n @ e refinement, n ∈

�

aggregate e {,e} @ e (abs. anchored) aggregation
aggregate e {,e} ˜@ z (rel. anchored) aggregation, z ∈ �
select e where c selection
τn duration
τ∗ time interval
τ&τ conjunction
τ | τ disjunction
τ \ τ exception
τ# < τ restriction

B CaTTS’ Constraint Propagation Algorithm

B.1 Domain Reduction Rules for Time Constraints

Time Constraints over Activities The following notations are used with the
subsequently given domain reduction rules for time constraints over activities.

– x ∈ Dx, x represents the domain Dx where Dx is represented by

• its starting point, represented by a finite domain constraint, i.e. lsx..hsx

(abrv. Sx), and
• its (possibly impricise duration), i.e. (d−

x : d+
x ) (abrv. dx)



time constraints, x, y ∈ τ :

x equals y
x

y

x before y

y after x := x before y

x

y

x starts y

y started by x := x starts y

x

y

x finishes y

y finished by x := y finishes y

x

y

x during y

y contains x := x during y

x

y

x meets y

y met by x := x meets y

x

y

x overlaps y

y overlapped by x := x overlaps y

x

y

x within y := x equals y ∨ x starts y ∨ x finishes y ∨ x during y

x on or before y := x equals y ∨ x before y

x on or after y := y on or before x

shift forward(x,d,y)

shift backward(y,d,x) := shift forward(x,d,y)

x d
. . . . . . . . . . . .

y sx + d = sy

ex + d = ey

extend(x,d,y)

shorten(x,d,y) := extend(y,d,x)

x d
. . . . . . . . . ..

y

sx = sy

ex + d = ey

relative in(x,τ ,i)
x x

τ

σi i

σ to τ (x) = i

relative to(x,τ ,i)
x x

τ

σi i

σ in τ (x) = i

definition on endpoints:

sx = sy ∧ ex = ey

sx ≤ ex < sy ≤ ey

sx = sy ≤ ex < ey

sy < sx ≤ ex = ey

sy < sx ≤ ex < ey

sx ≤ ex = sy ≤ ey

sx < sy < ex < ey

Fig. 4. Illustrative overview of CaTTS’ binary time constraints.



– the ending point (denoted lex..hex, abrv. Ex) of x can be computed from its
starting point and its duration, i.e. lex := lsx+d−x −1 and hex := hsx+d+

x −1
(abrv. Ex := Sx + dx − 1)

– [i1, . . . , ik] denotes the list representation of the domain Dx

– min(a, b) denotes the minimum of elements a and b

– max(a, b) denotes the maximum of elements a and b

– Dx ∩ Dy denotes the intersection of the domains Dx and Dy

– the symbol ∈ is overloaded:
• x ∈ τ is read, the variable x is of type τ

• x ∈ Dx is read, the variable x represents the domain (constraint) Dx,
i.e. x may be assigned to each of the values represented by Dx

– σ in τ(x) denotes the function that computes all the elements of type τ that
contain the elements of x (of type σ) and σ to τ(x) those elements of τ

overlapping with the elements of x; note that those functions are generated
from user-defined predicates of calendric types defined in CaTTS-DL

Note that all constraints over activities are equally defined for events and tasks
since an event x ∈ lsx..hsx may be represented by a task x′ ∈ lsx..hsx + (1 : 1),
i.e. events are represented by intervals with duration 1 and tasks are intervals
with duration greater or equal to 1.

Representation of CaTTS-CL’s unary operations as unary constraints:

duration x; , x ∈ Sx + dx

duration x; y ∈ dx

begin x; , x ∈ lsx..hsx + dx

begin x; y ∈ lsx..hsx

end x; , x ∈ lsx..hsx + dx

begin x; y ∈ lex..hex

index x; , x ∈ lsx..hsx + dx

begin x; y ∈ [ilsx , . . . , ihex ]

Some basic simplifications for time constraints over activities:

x equals x; x ∈ Dx

; x ∈ Dx

x before x; x ∈ Dx

; x ∈ ∅

x starts x; x ∈ Dx

; x ∈ ∅



x finishes x; x ∈ Dx

; x ∈ ∅

x during x; x ∈ Dx

; x ∈ ∅

x meets x; x ∈ Dx

; x ∈ ∅

x overlaps x; x ∈ Dx

; x ∈ ∅

x, y ∈ τ, x starts y; x ∈ Sx + dx, y ∈ Sy + dy | dx ≥ dy

; ⊥

x, y ∈ τ, x finishes y; x ∈ Sx + dx, y ∈ Sy + dy | dx ≥ dy

; ⊥

x, y ∈ τ, x during y; x ∈ Sx + dx, y ∈ Sy + dy | dx ≥ dy

; ⊥

x, y ∈ τ, x overlaps y; x ∈ Sx + dx, y ∈ Sy + dy | dx == 1
; ⊥

x, y ∈ τ, x overlaps y; x ∈ Sx + dx, y ∈ Sy + dy | dy == 1
; ⊥

Propagations for time constraints over activities:

x, y ∈ τ, x equals y; x ∈ Dx, y ∈ Dy

x equals y; , x ∈ Dx ∩ Dy, y ∈ Dx ∩ Dy

x, y ∈ τ, x before y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x before y; x ∈ lsx..(min(hsx + d+
x − 1, hsy − 1) − d+

x + 1) + (d−

x : d+
x ),

y ∈ max(lsy, lex + 1)..hsy + (d−

y : d+
y )

x, y ∈ τ, x starts y; x ∈ Sx + (d−

x : d+
x ), y ∈ Sy + (d−

y : d+
y )

x starts y; x ∈ Sx ∩ Sy + (d−

x : d+
x ), y ∈ Sx ∩ Sy + (d−

y : d+
y )

x, y ∈ τ, x starts y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x starts y; x ∈ lsx..min(hsx, hey − 1 − d+
x + 1) + (d−

x : d+
x ),

y ∈ max(lsy, lex + 1 − d−

y + 1)..hsy + (d−

y : d+
y )

x, y ∈ τ, x finishes y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x finishes y; x ∈ lsx..min(hsx, hsy − 1) + (d−

x : d+
x ),

y ∈ max(lsy, lsx + 1)..hsy + (d−

y : d+
y )



x, y ∈ τ, x finishes y; x ∈ Sx + dx, y ∈ Sy + dy

x finishes y; x ∈ (Ex ∩ Ey − dx + 1) + dx, y ∈ (Ex ∩ Ey − dy + 1) + dy

x, y ∈ τ, x during y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x during y; x ∈ max(lsx, lsy + 1)..hsx + (d−

x : d+
x ),

y ∈ lsy..min(hsy, hsx − 1) + (d−

y : d+
y )

x, y ∈ τ, x during y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x during y; x ∈ lsx..min(hsx, hey − 1 − d+
x + 1) + (d−

x : d+
x ),

y ∈ max(lsy, lex + 1 − d−

y + 1)..hsy + (d−

y : d+
y )

x, y ∈ τ, x meets y; x ∈ Sx + dx, y ∈ Sy + dy

x meets y; x ∈ (Ex ∩ Sy − dx + 1) + dx, y ∈ (Ex ∩ Sy) + dy

x, y ∈ τ, x overlaps y; x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

x overlaps y; x ∈ max(lsx, lsy + 1 − d−

x + 1)..hsx + (d−

x : d+
x ),

y ∈ lsy..min(hsy, hex − 1) + (d−

y : d+
y )

shift forward(x, d, y); x ∈ lsx..hsx + (d−

x : d+
x ), d ∈ d− : d+

shift forward(x, d, y); , x ∈ lsx + d−..hsx + d+ + (d−

x : d+
x )

shift forward(x, d, y); y ∈ lsy..hsy + (d−

y : d+
y ), d ∈ d− : d+

shift forward(x, d, y); , y ∈ lsy − d−..hsy − d+ + (d−

y : d+
y )

shift forward(x, d, y); x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

shift forward(x, d, y); , d ∈ lsy − hex : hsy − lex

extend by(x, d, y); x ∈ lsx..hsx + (d−

x : d+
x ), d ∈ d− : d+

extend by(x, d, y); , y ∈ lsx..hsx + (d−

x + d− : d+
x + d+)

extend by(x, d, y); y ∈ lsy..hsy + (d−

y : d+
y ), d ∈ d− : d+

extend by(x, d, y); , x ∈ lsy..hsy + (d−

y − d− : d+
y − d+)

x ∈ σ, y ∈ τ, relative in(x, τ, i); x ∈ Dx

relative in(x, τ, i); i ∈ [σ in τ (Dx)]

x, y ∈ τ, relative to(x, τ, i); x ∈ Dx

relative to(x, τ, i); i ∈ [σ to τ (Dx)]

Time Constraints over Durations and Indices With some applications it
becomes necessary not only to reason over activities but also over durations (and
indices of activities). To this purpose, durations (and indices) are represented by
ordinary finite domain constraints with interval representation, i.e. for durations
xd ∈ ld..hd (and for indices xi ∈ li..hi). The equality, inequality, and disequality



constraints (i.e. == | <= | < | > | >= | ! =) over durations and indices are
lineary constraints over integer intervals as given in [16] for example. Note that
as it is the case of CaTTS’ time constraints over activities, time constraints
over durations (and indices) are defined for variables representing durations (and
indices) from the same type (defined in some CaTTS-DL calendar specification).

B.2 Domain Reduction Rules for Conversion Constraints

The domain reduction rule for aggregation subtypes is given in the following:

x ∈ σ, y ∈ τ, σ � τ convert(x, σ, y, τ ), x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

convert(x, σ, y, τ ), x ∈ ps
τ→σ(lsy)..(pe

τ→σ(hey) − d+
x + 1) + pd

τ→σ(d−

y : d+
y )

y ∈ ps
σ→τ (lsx)..ps

σ→τ (hsx) + pd
σ→τ(d−

x : d+
x )

The domain reduction rule for inclusion subtypes is given in the following:

x ∈ σ, y ∈ τ, σ ⊆ τ convert(x, σ, y, τ ); x ∈ lsx..hsx + (d−

x : d+
x ), y ∈ lsy..hsy + (d−

y : d+
y )

convert(x, σ, y, τ ); x ∈ ps
τ→σ(lsy)..ps

τ→σ(hsy) + (pe
τ→σ(ley) − ps

τ→σ(lsy) + 1 :
pe

τ→σ(hey) − ps
τ→σ(hsy) + 1)

y ∈ pσ→τ (lsx)..pσ→τ (hsx) + (pσ→τ (lex) − pσ→τ(lsx) + 1 : pσ→τ (hex) − pσ→τ (hsx) + 1)

B.3 Translation Functions for Conversion Constraints

The translation functions pσ→τ and pτ→σ used with CaTTS’ conversion con-
straints are generated from any pair of types σ and τ with σ ≤ τ (i.e. σ is a
(inclusion or aggregation) subtype of τ) defined in a CaTTS-DL calendar specifi-
cation. That means, such functions are generated for any pair of subtypes in the
reflexive and transitive closure of a CaTTS-DL calendar specification according
to the ≤- relation.

Translation Functions for Aggregations.

Periodic Aggregations. CaTTS-DL type declaration (pattern) for periodic ag-
gregations has the following form:

type σ = aggregate d1 τ , . . . dk τ @ τ ( a ) ;

where

– di, i ∈ {1, . . . k} is the duration of some value of type σ in terms of values
of type τ ,

– k is the length of the ordered periodic pattern of k values of type σ, and
– a the anchor index oftype σ in τ

E.g. “week” defined from “day”:

type week = aggregate 7 day @ day ( 1 ) ;



From such a periodic aggregation type declaration in CaTTS-DL the fol-
lowing translation functions ps

σ→τ (start), pe
σ→τ (end), pd

σ→τ (duration), ps
τ→σ

(starting sucsessor), pe
τ→σ (ending predecessor), and pd

τ→σ (duration) which are
used with CaTTS’ conversion constraints are (automatically) generated from
CaTTS-DL type declarations by the following definitions:

ps
σ→τ (i) := let i mod k = m

in (d1 + . . . + dk) × ((i − 1) div k) + a + (d1 + . . . + dm−1)

pe
σ→τ (i) := let i mod k = m

in (d1 + . . . + dk) × ((i − 1) div k) + a + (dm + . . . + dk − 1)

pd
σ→τ (d−x : d+

x ) := (d−x × min(d1, . . . d : k) : d+
x × max(d1, . . . , dk))

ps
τ→σ(i) := if (i − a) mod (d1 + . . . + dk) == 0

then (i − a) div (d1 + . . . + dk + 1)
else (i − a) div (d1 + . . . + dk + 2)

pe
τ→σ(i) := if (i − a) mod (d1 + . . . + dk) == d1 + . . . + dk − 1

then (i − a) div (d1 + . . . + dk + 1)
else (i − a) div (d1 + . . . + dk)

pd
τ→σ(d−y : d+

y ) := (d−y div min(d1, . . . dk) : d+
y × div max(d1, . . . dk))

Periodic Aggregations with finite many Exceptions. E.g. “month” defined from
“day”:

type month = aggregate

31 day named january ,
alternate month ( i )
| ( ( i div 12)+1) mod 4 == 0 &&

( ( ( i div 12)+1) mod 100 != 0
| | ( ( i div 12)+1) mod 400 == 0) −> 29 day

| otherwise −> 28 day
end named f ebruary ,
31 day named march ,
30 day named ap r i l ,
31 day named may ,
30 day named june ,
31 day named ju ly ,
31 day named august ,
30 day named september ,
31 day named october ,
30 day named november ,
31 day named december @ day ( 1 ) ;

Instead of di for i ∈ {1, . . . k} we have Di∈{1,...k}, where every Di is the set of
possible durations for a specific phase i. In the cases of “month”, these would
be Dj∈{1,3,5,7,8,10,12} = {31}, Dl∈{4,6,9,11} = {30} and D2 = 28, 29. Additionally,



let D=
⋃

Di∈{1,...k} and L= {d̄|d̄ =
∑k

i=1 di, di ∈ Di} the set of possible cycle
lengths (for months, L= {265, 266}).

pd
σ→τ (d−x : d+

x ) := let (d−
x mod k) × min(D) = ḋ−x

(d+
x mod k) × max(D) = ḋ+

x

(d−x div k) × min(L) = c−

(d+
x div k) × max(L) = c+

in (ḋ−x + c− : ḋ+
x + c+)

pd
τ→σ(d−y : d+

y ) := ((d−x × k) div max(L) : (d+
x × k) div min(L)) (???)

Other conversions need additional facilities of constraint solving and memo-
ization. This makes them not fit into the above mentioned pattern.

Translation Functions for Inclusions. CaTTS’ generates translation func-
tions for each kind of predicate that can be specified for the select type con-
structor.

Time Constraint “relative i in τ”. The following notations are used for the
subsequently given translation functions:

– σ � τ
– d denotes the duration of σ in τ (according to the aggregation subtype

definition of τ from σ)
– a denotes the anchor of σ in τ (according to the aggregation subtype defini-

tion of τ from σ)
– length([l..k]) denotes the length of the list [l..k] (from element l to element

k)

Case 1:

type ρ = select σ ( i ) where relative i in τ == k ;

Defining ρ as an inclusion subtype of σ, i.e. ρ ⊆ σ.
From such an inclusion type declaration in CaTTS-DL the following transla-

tion functions which are used with CaTTS’ conversion constraints are (automat-
ically) generated from CaTTS-DL type declarations by the following definitions:

pρ→σ(i) := d × (i − 1) + a + k − 1

psucc
σ→ρ(i) := let τ of σ = ((i − 1) div d) + i in

if (((i − 1) mod d) + 1) <= k

then τ of σ

else τ of σ + 1

ppred
σ→ρ(i) := let τ of σ = ((i − 1) div d) + i in

if (((i − 1) mod d) + 1) < k

then τ of σ − 1
else τ of σ

Case 2:



type ρ = select σ ( i ) where

relative i in τ >= k && relative i in τ <= l ;

Defining ρ as an inclusion subtype of σ, i.e. ρ ⊆ σ.
From such an inclusion type declaration in CaTTS-DL the following transla-

tion functions which are used with CaTTS’ conversion constraints are (automat-
ically) generated from CaTTS-DL type declarations by the following definitions:

pρ→σ(i) := d × ((i − 1) div length([l..k])) + a + ((i − 1) mod length([l..k]))

psucc
σ→ρ(i) := let τ of σ = ((i − 1) div d) + i in

if (((i − 1) mod d) + 1) >= l and (((i − 1) mod d) + 1) <= k

then (length([l..k])× τ of σ) − length([l..k]) + (i mod d)
elseif (((i − 1) mod d) + 1) < l then (length([l..k])× (τ of σ) − 1)) + 1
else (length([l..k])× τ of σ) + 1

ppred
σ→ρ(i) := let τ of σ = ((i − 1) div d) + i in

if (((i − 1) mod d) + 1) >= l and (((i − 1) mod d) + 1) <= k

then (length([l..k])× τ of σ) − length([l..k]) + (i mod d)
elseif (((i − 1) mod d) + 1) < l then length([l..k])× (τ of σ) − 1)
else length([l..k])× τ of σ

The specifications of the translation functions for further inclusion subtypes
will be given in an later version of this article.

C CaTTS-Joins of Calendric Types

The following algorithm computes the join for a pair of calendric types defined
in a CaTTS-Dl calendar specification according to Proposition 1. The algorithm
is given in Prolog.

upperbound(X,X,X) : − ! .
upperbound(X,Y,U) : − d i r e c t s up e r t yp e (X, SuperX ) , upperbound(SuperX ,Y,U) .
upperbound(X,Y,U) : − d i r e c t s up e r t yp e (Y, SuperY ) , upperbound(X, SuperY ,U) .

a l lupperbounds (X,Y, Us ) : − bagof (U, upperbound(X,Y,U) ,Us ) .

mult i a l lupperbounds ( [X,Y | Rest ] , [ Us | Uss ] ) : − a l lupperbounds (X,Y, Us ) ,
mult i a l lupperbounds (Rest , Uss ) .

mult i a l lupperbounds ( [ Last ] , [ Last ] ) .
mult i a l lupperbounds ( [ ] , [ ] ) .

concat ( [A,B | Rest ] , Concatenation ) : − append (A,B,AB) ,
concat ( [AB| Rest ] , Concatenation ) .

concat ( [ Resu l t ] , Resu l t ) .
concat ( [ ] , [ ] ) .

union ( Set , Union ) : − concat ( Set ,MUnion) , remove dupl i cates (MUnion , Union ) .

mu l t i j o i n ( Items , J ) : − mult i a l lupperbounds ( Items , Uss ) ,
(Us = [ [R]] −> J = R; union (Uss , Us ) , mu l t i j o in (Us , J ) )

j o in (X,Y, J ) : − mu l t i j o i n ( [X,Y] , J ) .


